
WARE
Web Application for Robotics Education

University of Nevada, Reno

Department of Computer Science and Engineering

Acceptance Criteria and Testing Strategy and Plan

Team 17

Zachery Wiles, Ryan Lunt, Sean Griffith, Herman Hira

Instructors: David Feil-Seifer and Devrin Lee

Project Sponsor
Dr. Rui Wu

Associate Professor
East Carolina University

External Advisor
Ben Gallagher

Security Analyst
University of Nevada, Reno

March 12, 2021

1. Abstract
The project team is developing a web application named WARE, a full stack web
application designed specifically for higher education robotics classes. WARE utilizes
the OpenAI Gym framework, an existing open-source project, and provides a user
interface to the framework’s robotics environments.

The project is important as it allows users to develop and compile robotics code in an
online environment. The client-server architecture gives users freedom from the time
consuming and process intensive task of installing and running the framework on a local
machine.

WARE incorporates the following major features: front-end code editor with syntax
highlighting, back-end code compilation, the ability to create user accounts for students
and instructors, and the ability to access the site on the public Internet.

2. Project Updates and Changes
The WARE project development is progressing with the implementation of additional
features that are integral to the application. One of these features is user management,
which gives the application the ability to create user accounts for students and
instructors. In addition, parallel submission processing has been implemented. This will
allow multiple users to simultaneously submit code to the application without error.
Progress tracking has also been implemented within WARE. This feature will display to
the user the progress made on an environment and whether or not the environment is
complete on the environments page. Submission caching was also implemented,
allowing the application to save the code entered by the user in an environment so that
they can come back to it at a later time without starting from scratch. Finally, submission
validation has been added into the overall code submission process within an
environment. This added process ensures that the user has entered code that invokes
the correct environment.

Security within the application will be a major focus in future development of WARE.
Because the application stores email addresses and passwords, it is important that the
application provides adequate safeguards to protect this information from attackers. The
project team will be using a Flask extension called Flask-Security which gives access to
basic security and account management controls that are commonly seen in web
applications today. Furthermore, implementing error messages for key user interaction
sequences will be a priority in order to improve the overall user experience when an
unexpected input is received.

1

3. User Stories and Acceptance Criteria

3.1 Front-End Subsystem

User Story: Class Creation

As an instructor that has signed in, I want to be able to create a new class so that I can assign
my students a list of environments to experiment with that supplement their learning outside of
lectures.

Acceptance Criteria

● AC1: The class creation page is only accessible to users with an account type of
instructor.

● AC2: Upon login to their account, and after navigating to their homepage, the
instructor is able to select a “Create Class” button.

● AC3: Upon selecting the “Create Class” button, the user is redirected to the class
creation page.

● AC4: Upon accessing the class creation page, the user is presented with a form that
can be filled out with class information.

● AC5: Instructors will be able to select as many environments as they wish from the list
of available environments for their students to be able to experiment with.

● AC6: The class creation page form may not be submitted by the instructor until all
fields are filled with relevant information.

● AC7: Upon successful class creation, a randomly generated class ID is displayed
beneath the newly created class’s name on the instructor’s homepage.

● AC8: Upon successful class creation, the instructor is returned to their homepage
where they are able to see a dropdown menu for the class they have created,
containing the list of environments they have selected as well as any students that
have registered for their class.

● AC9: Upon unsuccessful class creation, the instructor is notified of the problem and
the class creation page’s form fields are cleared.

2

User Story: Student Progress Display

As an instructor of a class, I want to be able to see the progress each of my students have
made in every assigned environment so that I can provide feedback on their work.

Acceptance Criteria

● AC1: When the instructor opens their homepage, the list of classes they are
instructing is displayed.

● AC2: For each class created by an instructor, a dropdown menu may be opened to
display each of the environments selected for that class.

● AC3: For each environment displayed in the class environment list dropdown menu,
an additional dropdown menu may be selected to display the progress of each student
in the selected environment.

3.2 Environment Page Subsystem

User Story: Retention of Submitted Code

As a user experimenting with an environment, I want to be able to retain code submitted to
the server so that I can make changes to it instead of having to start from scratch.

Acceptance Criteria

● AC1: The user can input their own custom solution to the environment code box.

● AC2: The user can submit their code to the web server using the “Compile and Run”
button.

● AC3: After the submission is processed by the web server, the environment page is
refreshed with the results of the submission.

● AC4: After the submission is processed by the web server, the code used for the
submission is loaded in the environment code box for the user to continue their work.

● AC5: If the web server was able to execute the user’s submission, that user’s
submission is saved in a unique file on the server so that the user may return at
another time to continue their work.

3

User Story: Submission Processing Indication

As a user experimenting with an environment, I want to be shown an animation after
submitting code so that I can be sure my submission is being processed.

Acceptance Criteria

● AC1: The user can submit their code to the web server using the “Compile and Run”
button.

● AC2: Upon submitting their code using the “Compile and Run” button, the button is
darkened, disabled, and an animated loading circle is prepended to the button’s text.

● AC3: Upon receiving the results for their submission, the “Compile and Run” button is
returned to its original state.

3.3 Account Management Subsystem

User Story: User Registration

As a student who has not registered for an account, I want to be able to register for an
account so that I can experiment in the robotics environments assigned to me by my
instructor.

Acceptance Criteria

● AC1: WARE Homepage has a link to the sign-up page that can be utilized by a user
who is not logged in.

● AC2: Upon accessing the sign-up page, the user is presented with a form that can be
filled out with account information.

● AC3: If the user selects the “Student” option, they are presented with an additional
field to input the code for the class they wish to join.

● AC4: The sign-up page form may not be submitted by the user until all fields are filled
with relevant information.

● AC5: Upon successful account creation, the user is redirected to the sign-in page.

● AC6: Upon unsuccessful account creation, the user is notified of the problem and the
sign-up page’s form fields are cleared.

4

User Story: User Login

As a User who has already registered for an account, I want to be able to login to my account
so that I can begin experimenting in the robotics environments available to my account.

Acceptance Criteria

● AC1: WARE Homepage has a link to the sign-in page that can be utilized by a user
who is not logged in.

● AC2: Upon accessing the sign-in page, the user is presented with a form that can be
filled out with their account’s information.

● AC3: The sign-in page form may not be submitted by the user until all fields are filled
with relevant information.

● AC4: Upon successful login, the user is redirected to their homepage and can engage
in available environments.

● AC5: Upon unsuccessful login, the user is notified of the problem and the sign-in
page’s form fields are cleared.

5

3.4 Submission Processing Subsystem

User Story: Submission Result Display

As a student submitting code for evaluation, I want to receive results related to my submission
so that I can improve my work and understand what my submission accomplished.

Acceptance Criteria

● AC1: The user can submit their code to the web server using the “Compile and Run”
button.

● AC2: The web server validates the submitted code to ensure the user is using the
correct environment for their submission.

● AC3: The web server records all console output from the submitted code.

● AC4: The web server records all error output from the submitted code.

● AC5: The web server records the state of the environment as the submitted code
solution is running and saves that data in a video.

● AC6: Upon receiving the results of their submission, the user who made the
submission can see text output from their submission, including any errors that
occurred.

● AC7: Upon receiving the results of their submission, the user who made the
submission can see a video playback depicting the state of the environment as their
code was executed.

6

User Story: Tracking Student Progress

As an instructor of a classroom, I want my students’ progress in each assigned environment
to be tracked so that I can ensure that my students are progressing as expected.

Acceptance Criteria

● AC1: When the web server receives a valid submission from a user, the submission is
executed, and submission results are logged.

● AC2: Submission results are checked to determine if the user’s submission managed
to complete the objective of the environment.

● AC3: If the user’s submission managed to complete the objective, the progress of the
user in that environment is changed to “completed”.

● AC4: If the user’s submission successfully executed, the progress of the user in that
environment is changed to “started”.

● AC5: If the user has already submitted a solution for the environment that completed
the objective, the user’s progress does not regress from “completed” to “started” if a
new submission fails to complete the objective.

3.5 Database Subsystem

User Story: Sensitive Data Security

As a user of the WARE website, I want sensitive information related to my account to be
secured so that malicious actors cannot gain access to it.

Acceptance Criteria

● AC1: User account information is stored in the database.

● AC2: The password for each user account is stored as a hash value so that it is not
retrievable if a malicious actor gains access to the database.

7

User Story: Saving the Best Submission

As a student in a class, I want my best submission in each assigned environment to be saved
so that I will never lose progress when discovering a solution to an assigned environment.

Acceptance Criteria

● AC1: Each user is uniquely identifiable.

● AC2: Each environment is uniquely identifiable.

● AC3: For every environment a user has made progress in, the code submission which
led to the accomplished progress is saved.

● AC4: If a user submits a faulty solution to an environment, that solution will not
overwrite a solution which made more progress.

● AC5: If a user submits a solution to an environment that made less progress than a
previous solution, that solution will not overwrite the previous best solution.

4. Testing Workflow

4.1 Happy Path Workflows

4.1.1 Happy Path Workflow 1: Registering an Instructor Account
This testing workflow is designed to test the process of registering an instructor account
within WARE. Creating an instructor account is the first step to using WARE, as it is
required that an instructor create an account before students are allowed to create their
own accounts and start using WARE. In this workflow, the tester visits the account sign
up page and provides a first name, last name, email address, and password. After the
form is submitted, the workflow provides steps to validate that the account was created
by having the tester provide the same email address and password at the login screen
and check that the site accepts the login credentials.

Table 4.1: Testing workflow for registering an instructor account

Step # Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Sign Up” button located The Sign Up page is displayed to the

8

on the right side of the navigation
bar

user.

3 Enter a name into the First Name
field

The First Name field displays the
name entered.

4 Enter a name into the Last Name
field

The Last Name field displays the
name entered.

5 Enter a valid email address into the
Email Address field

The Email Address field displays the
email address entered.

6 Enter a password into the Password
field. Ensure that the password

meets the complexity requirements
detailed underneath the Password

field

The Password field displays the
password entered using dots (·) for

increased privacy.

7 Choose “Instructor” for Type of
Account

The radio button under Type of
Account highlights the “Instructor”

radio button.

8 Click the “Sign Up” button at the
bottom of the form

If successful, a page stating that the
account has been created will be

displayed.

9 Click the “Log In” button located in
the navigation bar

The Login page is displayed to the
user.

10 Enter the same email address used
in Step 5 into the Email Address

field

The Email Address field displays the
email address entered.

11 Enter the same password used in
Step 6 into the Password field.

The Password field displays the
password entered using dots (·)

12 Click the “Sign In” button at the
bottom of the form

If the account was successfully
created, the instructor portal will be
displayed. The user’s name will be
displayed within the portal with the

designation “Instructor.” Additionally,
the name of the user will be displayed

in the navigation bar.

9

4.1.2 Happy Path Workflow 2: Creating a Class
This testing workflow is designed to test the ability to create a class to be used by an
instructor. Instructors will create a class after creating an account in order to create a
unique identifier that their students can use when creating their own accounts.
Additionally, instructors will be able to use classes to limit which environments are
accessed by their students. This workflow guides the tester in creating a class in the
instructor portal. The tester validates that a class has been created by viewing the
instructor portal and verifying that the class is listed.

Table 4.2: Testing workflow for creating a class

Step Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Log In” button located in
the navigation bar

The Login page is displayed.

3 Enter an email address that is
registered to an Instructor account

into the Email Address field.

The Email Address field displays the
email address entered.

4 Enter the password to the Instructor
account that is linked to the email
address used in Step 3 into the

Password field.

The Password field displays the
password entered using dots (·)

5 Click the “Sign In” button The instructor portal is displayed for
the specified account.

6 In the portal, click the “Create Class”
button

A page will be displayed with a form.

7 Enter a name for the class in the
“Class Name” field

The “Class Name” field displays the
name of the class entered.

8 Under “Enabled Environments,” click
the checkboxes next to the

environments that should be
available to students in the class.

The checkboxes selected under
“Enabled Environments” are filled with

a checkmark.

9 Click the “Create” button If successful, the instructor portal will
be displayed with the newly created

class name listed under Classes.
Additionally, a randomly generated

10

class ID is listed under the Class
Name that can be distributed to

students.

4.1.3 Happy Path Workflow 3: Registering a Student Account
This testing workflow is similar to Happy Path Workflow 1, except that a Student
account is created instead. This workflow guides the tester in creating a Student
account with a valid classroom identifier. Afterwards, the workflow documents how to
validate that an account with the Student type is created successfully, that the student
account is correctly linked to the classroom that was used to sign up, and that the
student account has access to the environments enabled by the classroom’s instructor.

Table 4.3: Testing workflow for registering a student account

Step Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Sign Up” button located
on the right side of the navigation

bar

The Sign Up page is displayed to the
user.

3 Enter a name into the First Name
field

The First Name field displays the
name entered.

4 Enter a name into the Last Name
field

The Last Name field displays the
name entered.

5 Enter a valid email address into the
Email Address field

The Email Address field displays the
email address entered.

6 Enter a password into the Password
field. Ensure that the password

meets the complexity requirements
detailed underneath the Password

field

The Password field displays the
password using dots (·) for increased

privacy.

7 Choose “Student” for Type of
Account

The “Student” radio button under
“Type of Account” is highlighted.

8 Enter a valid class ID into the “Class
ID” field

The “Class ID” field displays the ID
entered.

11

9 Click the “Sign Up” button at the
bottom of the form

If successful, a page stating that the
account has been created will be

displayed.

10 Click the “Log In” button located in
the navigation bar

The Login page is displayed to the
user.

11 Enter the same email address used
in Step 5 into the Email Address

field

The Email Address field displays the
email address entered.

12 Enter the same password used in
Step 6 into the Password field.

The Password field displays the
password entered using dots (·)

13 Click the “Sign In” button at the
bottom of the form

If the account was successfully
created, the student portal will be

displayed. Additionally, the name of
the user will be displayed in the

navigation bar.

14 Verify that the Class ID entered in
step 8 is listed next to “Class ID”

below the user’s name in the
student portal.

If verification is successful, the
student was added to the correct

class.

15 Verify that the environments listed in
the student portal are the same

environments limited by the class
that the student was registered in.

If verification is successful, the
student account has access to only
those environments enabled by the

class.

4.1.4 Happy Path Workflow 4: Opening Robotics Environment
This test workflow provides a process for conducting a test procedure on opening a
robotics environment within WARE. Being able to navigate to a robotics environment is
of prime importance, as an environment is where a student writes, compiles, and runs
code. The workflow first has the tester log in as a student. Afterwards, the tester
chooses an environment from the list of available choices within the user portal. The
workflow is validated when the tester can verify that the environment loads successfully
within the tester’s browser.

Table 4.4: Testing workflow for opening a robotics environment

Step Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads

12

and displays the WARE homepage.

2 Click the “Log In” button located in
the navigation bar

The Login page is displayed.

3 Enter an email address that is
registered to an Student account

into the Email Address field.

The Email Address field displays the
email address entered.

4 Enter the password to the Student
account that is linked to the email
address used in Step 3 into the

Password field.

The Password field displays the
password entered using dots (·)

5 Click the “Sign In” button The student portal is displayed for the
specified account.

6 Click an environment in the list of
available environments presented in

the portal

If successful, the environment loads in
the web browser. A code editor is
displayed on the left. A video of a

robot and a terminal output is
presented on the right. Beneath the

code editor, two buttons are
displayed: “Upload File” and “Compile

and Run”

4.2 Unhappy Path Workflows

4.2.1 Unhappy Path Workflow 1: Logging in with a user account
This test workflow details the steps required to test the login functionality using
incomplete or incorrect login information. The login mechanism is designed to be user
friendly, indicating whether the username or password fields are empty and whether the
username and password submitted together are incorrect. The mechanism is also
designed to be secure, preventing unauthorized individuals from accessing a user’s
account without the correct combination of username and password. This workflow
validates that the login mechanism does not allow invalid username/password
combinations to access the system. It also validates that the login mechanism displays
helpful information to users in order to resolve legitimate login problems.

Table 4.5: Testing workflow for logging in with a user account

Step Step Description Expected Result

13

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Log In” button located in
the navigation bar

The Login page is displayed.

3 Click the “Sign In” button at the
bottom of the form.

A tooltip is displayed under the Email
Address field that says, “Please fill out

this field.”

4 Enter some text that is not in the
form of an email address into the

“Email Address” field

The “Email Address” field displays the
text entered.

5 Click the “Sign In” button at the
bottom of the form.

A tooltip is displayed under the Email
Address field that says, “Please enter

an email address.”

6 Enter an email address into the
“Email Address” field that is not
currently in the login database.

The “Email Address” field displays the
email address entered.

7 Click the “Sign In” button at the
bottom of the form.

A tooltip is displayed under the
Password field that says, “Please fill

out this field.”

8 Enter a password of the tester’s
choice into the Password field

The Password field displays the
password entered using dots (·)

9 Click the “Sign In” button at the
bottom of the form.

A message appears above the “Email
Address” field that states “Incorrect

email address or password.”

10 Enter an email address that is
registered to a Student account

The “Email Address” field displays the
email address entered.

11 Enter an incorrect password for the
email address entered in Step 7 into

the Password field

The Password field displays the
password entered using dots (·)

12 Click the “Sign In” button at the
bottom of the form.

A message appears above the “Email
Address” field that states “Incorrect

email address or password.”

13 Enter an email address that is
registered to an Instructor account

The “Email Address” field displays the
email address entered.

14 Enter an incorrect password for the The Password field displays the

14

email address entered in Step 7 into
the Password field

password entered using dots (·)

15 Click the “Sign In” button at the
bottom of the form.

A message appears above the “Email
Address” field that states “Incorrect

email address or password.”

16 Enter an email address that is
registered to a Student account

The “Email Address” field displays the
email address entered.

17 Enter the password linked to the
email address entered in Step 7 into

the Password field

The Password field displays the
password entered using dots (·)

18 Click the “Sign In” button at the
bottom of the form.

If the email address and password
match an account in the login

database, the student portal is loaded.
This validates that only the correct

username and password combination,
when matched against the database,

will allow the user into the site.

Unhappy Path Workflow 2: Signing up for an account
This test workflow documents the procedure for verifying that the required restraints are
met for a user when they are signing up for an account. In the user account database,
an email address can only be linked to one user at a time. Additionally, the password
must meet the minimum complexity requirements to establish a baseline form of
security. Lastly, if a student is registering an account, it is important to ensure that the
student uses a valid class ID. This workflow validates that all of these database
requirements are being fulfilled.

Table 4.6: Testing workflow for signing up for an account

Step # Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Sign Up” button located
on the right side of the navigation

bar

The Sign Up page is displayed to the
user.

3 Enter a name into the First Name
field

The First Name field displays the
name entered.

15

4 Enter a name into the Last Name
field

The Last Name field displays the
name entered.

5 Enter an email address that is
already linked to a user account.

The Email Address field displays the
email address entered.

6 Enter a password into the Password
field. Ensure that the password

meets the complexity requirements
detailed underneath the Password

field

The Password field displays the
password entered using dots (·) for

increased privacy.

7 Choose “Instructor” for Type of
Account

The radio button under Type of
Account highlights the “Instructor”

radio button.

8 Click the “Sign Up” button at the
bottom of the form

An error message appears below the
“Email Address” field that states “This
email address is currently registered

to an account.”

9 Enter an email address that is not
linked to a user account.

The Email Address field displays the
email address entered.

10 Enter a password into the Password
field that does not meet the

complexity requirements stated
underneath the Password field

The Password field displays the
password entered using dots (·) for

increased privacy.

11 Click the “Sign Up” button at the
bottom of the form

An error message appears below the
Password field that states “The

password does not meet the minimum
complexity requirements”

12 Enter a password into the Password
field. Ensure that the password

meets the complexity requirements
detailed underneath the Password

field

The Password field displays the
password entered using dots (·) for

increased privacy.

13 Choose “Student” for Type of
Account

The radio button under Type of
Account highlights the “Student” radio

button.

14 Enter some text into the “Class ID”
field that does not match an existing

Class ID in the database.

The “Class ID” field displays the ID
entered.

16

15 Click the “Sign Up” button at the
bottom of the form

An error message displays below the
“Class ID” field that states “The Class
ID entered does not match an existing

class.

16 Enter a valid Class ID into the
“Class ID” field

The “Class ID” field displays the ID
entered.

17 Click the “Sign Up” button at the
bottom of the form

If the email address does not currently
exist in the database, the password
meets the complexity requirements,

and (if registering a Student account)
a valid Class ID is given, then the

user account will be created. A page
stating that the account has been

created will be displayed.

Unhappy Path Workflow 3: Submitting Code in an Environment
This test workflow documents the procedure for verifying that valid Python code is
entered in the code editor upon submission. The Python code submitted by a user is
considered valid if they are submitting code with the proper functions that call the
environment that is currently in use. This workflow guides the tester in entering invalid
code and checking if an alert is shown. The workflow validates that the submission
validation mechanism is working as designed.

Table 4.7: Testing workflow for submitting code in an environment

Step Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 Click the “Log in” button located in
the navigation bar

The Login page is displayed.

3 Choose a Student account that has
access to the FetchPickAndPlace-v1

environment. Enter the email
address of this account into the

Email Address field.

The Email Address field displays the
email address entered.

4 Enter the password to the Student
account that is linked to the email
address used in Step 3 into the

The Password field displays the
password entered using dots (·)

17

Password field.

5 Click the “Sign In” button The student portal is displayed for the
specified account.

6 Choose the FetchPickAndPlace-v1
environment from the list of

available environments.

If successful, the environment loads in
the web browser.

7 In the code editor, change the
environment name inside the

gym.make() function from
FetchPickAndPlace-v1 to

FetchPush-v1.

The code editor displays the code
entered.

8 Click the “Compile and Run” button The terminal output window will
display an error saying that the

submission is invalid for the current
environment.

9 In the code editor, delete the line
that contains the gym.make()

function.

The code editor deletes the code
removed.

10 Click the “Compile and Run” button The terminal output window will
display an error saying that the

submission is invalid for the current
environment.

11 In the code editor, enter the
following line into the code: env =

gym.make("FetchPickAndPlace-v1")

The code editor displays the code
entered.

12 Click the “Compile and Run” button If successful, the environment will
load the video and terminal output of
the code entered in the code editor.

This validates that the code
submission component is checking for
valid code that pertains to the current

environment.

Unhappy Path Workflow 4: Browsing to Invalid Pages
This test workflow documents the procedure to check whether the dedicated 404 error
page is displayed when a user attempts to navigate to a page that does not have a valid
URL in WARE. If a user tries to navigate to a webpage that is not valid in WARE, a

18

dedicated error page will be displayed stating that the page does not exist. This
workflow validates that the dedicated error page is being properly displayed and that no
other internal server error pages are shown to the user.

Table 4.8: Testing workflow for browsing to invalid pages

Step Step Description Expected Result

1 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

2 In the address bar of the web
browser, add “/testing” to the

domain.

Nothing happens within WARE.

3 Press the “Enter” key on your
keyboard

A page with the WARE navigation bar
appears. Below the bar, a message
stating that the page could not be

found is displayed.

4 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

5 In the address bar of the web
browser, add “/envs/20” to the

domain.

A page with the WARE navigation bar
appears. Below the bar, a message
stating that the page could not be

found is displayed.

6 Navigate to the WARE homepage. The web browser successfully loads
and displays the WARE homepage.

7 In the address bar of the web
browser, add “/envs/2” to the

domain.

If successful, an environment is
loaded in the browser. This validates

that all valid URLs are properly
loaded, as opposed to invalid URLs

which result in a dedicated error page.

19

5. Testing Strategy
For our web application, we will be using a variety of testing methodologies to make
sure our application reaches high standards and performs as we intend it to. These
testing methods include acceptance tests, component tests, and lastly, integration tests.
Primarily, acceptance tests will overlap with component and integration tests. For the
first phase of testing, we will be focusing solely on component tests. As a web
application containing many different systems and subsystems, component tests will
allow us to confirm that all the small parts of our website work independently. However,
they also need to work together in systems and with the website as a whole. Once all of
our component tests are successful, it isn't to say that everything will work when pieced
together. We will need to follow up and make use of integration tests afterwards. This
testing method will allow us to see how subsystems work together in a system or in
conjunction with other systems that aren't entirely related to one another. We will then
need to succeed with our integration tests to have a working website.

As far as testing strategy goes, we will be ensuring that simple rules will be met to
maintain validity of such tests. Firstly, the tester(s) of a certain system or subsystem will
not have been one of the members who developed that specific component. This is
meant to bring a mindset of someone who is less familiar with the code or component
(similar to the mindset of an actual user) to push boundaries and ‘not play by the rules’
or do what’s intended by the developer so to speak when using the component. The
developer of the component wouldn’t be the best fit to test their own work for those two
reasons despite knowing the ins and outs of their code. We have delegated testing
responsibilities for each test in the chart below in the ‘Test Data or Situation’ column
based on who didn’t work on a specific component. For example, Sean primarily
focused on the backend so he will be testing the front end. Inversely, Zach worked
primarily on the frontend side of things so we will be helping test the backend. Secondly,
bugs or problems will be documented and reported to the team, along with an integer
value associated with how severe the problem may be which will lead to prioritization.
The developer associated with the component will then attempt to solve the issue and
once again allow for a tester to test the component. This will be repeated until
successful results occur.

We will declare our web application complete once we successfully implement our
functional requirements and all testing has been conducted appropriately and all
systems and subsystems operate in conjunction as intended. This will mean each test
must be done at least once to ensure each component works. This will more than likely
require multiple examinations due to finding potential defects for certain subsystems or
components to make sure they are in working order. We plan on using compatibility
testing on all subsystems to make sure everything works on its own, and then we will

20

move on to integration testing to test how all the small parts work with each other.
Lastly, while all of these overlap with acceptance tests, we will consider our main
acceptance test to be a full examination / integrated test of the website seeing if
everything works together perfectly. The below chart shows important tests that need to
be done based on the User Stories as well as from the Workflows.

Spreadsheet 5.4: Test Plan of important functionality that needs to be thoroughly
tested.

Test # Test Type Target
File or
Screen

Test Name Purpose
of Test

Test Data
or

Situation

Expected
Result

Actual
Result

Outcome and
Actions

Required

1 Front-end
Subsystem
/
Component
Testing

ClassPage
.html

Class Page
Accessibility

To see if
only the
instructor
accounts
have the
permissions
to view the
class
creation
page.

Tester:
Sean

1. No
account

2. Student
account

3. Instructor
account

1. Student
accounts met
with a ‘403
Forbidden’
status.

2. Not being
logged in will be
met with a ‘403
Forbidden’
status.

3. Instructor
accounts can
access the class
creation page.

1. TBA

2. TBA

3. TBA

Wait for
implementation.

2 Front-end
Subsystem
/
Component
Testing

ClassPage
.html

Render
Class Page

To see if the
instructor is
able to see
the
webpage
that allows
for a way to
set up a
class and
input
information.

Tester:
Sean

1. Instructor
account

2.
Non-instruc
tor based
account.

1. Instructor
accounts can
access the
various forms /
other html
widgets
associated with
creating a class.

2. The user will
be met with a
‘403 Forbidden’
status.

1. TBA

2. TBA

Wait for
implementation.

3 Front-end
Subsystem
/
Component
Testing

ClassPage
.html

Environment
Selection

To see if the
instructor is
able to
select which
environment
s their class
should have
access too.

Tester:
Sean

1. Instructor
account

2.
Non-instruc

1. The Instructor
will be able to
successfully
choose
environments
that the class will
have access to.

1. TBA

2. TBA

Wait for
implementation.

21

tor based
account.

2. The user will
be met with a
‘403 Forbidden’
status.

4 Front-end
Subsystem
/
Component
Testing

Class view Class
Dropdown

To see if the
class
creation
was
successful
and that the
user was
able to view
it.

Tester:
Sean

1. Instructor
account

2.
Non-instruc
tor based
account.

1. The Instructor
will be able to
see a drop down
menu from the
navigation bar
containing
information of
the class they
created.

2. The user will
be met with a
‘403 Forbidden’
status.

1. TBA

2. TBA

Wait for
implementation.

5 Front-end
Subsystem
/
Component
Testing

InstructorP
age.html

Class
Display

To see if the
instructor is
able to view
their
classes on
their
homepage.

Tester:
Sean

1. Instructor
account.

2.
Non-instruc
tor based
account.

1. The instructor
will be able to
see all classes
that they are
instructing.

2. The user will
be met with a
‘403 Forbidden’
status.

1. TBA

2. TBA

Wait for
implementation.

6 Front-end
Subsystem
/
Component
Testing

InstructorP
age.html

Class
Environment
Display

To see if the
instructor is
able to
successfully
see all the
environment
s they
selected for
a particular
class.

Tester:
Sean

1. Instructor
account.

2.
Non-instruc
tor based
account.

1. The instructor
will be able to
view all the
environments
they selected for
any of their
classes.

2. The user will
be met with a
‘403 Forbidden’
status.

1. TBA

2. TBA

Wait for
implementation.

7 Front-end
Subsystem
/
Component
Testing

InstructorP
age.html

Class
Progress
Display

To see if the
instructor is
successfully
able to view
all of the
student’s
progress in
a class for a
given

Tester:
Sean

1. Instructor
account.

2.
Non-instruc
tor based

1. The instructor
will be able to
view all the
status or
progress of each
student for any
given
environment
they have

1. TBA

2. TBA

Wait for
implementation.

22

environment
.

account access to in any
class.

2. The user will
be met with a
‘403 Forbidden’
status.

8 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Render
Environment
Page

To see if the
environment
page
renders and
formats
correctly.

1. Render
page is
rendered

1. Environment
page is
formatted
correctly and is
user friendly

1.As
expected

Standby and
await as more
developments or
changes are
made.

9 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Submit
Code

To see if the
user is able
to
successfully
submit and
compile
their code.

Tester:
Herman

1. Student
account

2. A user
who isn’t
logged in

1. The user will
be able to
submit and
compile their
Python code.

2. The user will
be redirected to
the login page.

1.As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

10 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Code
Results

To see if
code is
successfully
processed
and
displays
results to
the user.

Tester:
Herman

1. Student
account

1. The user sees
the page refresh
with appropriate
results in the
visual and
textual outputs.

1. As
expected

Standby and
await as more
developments or
changes are
made.

11 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Present
Code

To see if the
latest code
the user
submitted is
saved and
loaded into
the
environment
to continue
working on
it.

Tester:
Herman

1. Student
account

1. The last code
that the user
submitted is
present in the
environment
code box.

1. As
expected

Standby and
await as more
developments or
changes are
made.

12 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Save Code To see if the
current
most
successful
submission
of code the
user
submitted is
stored in a

Tester:
Herman

1. Student
account

1. The user’s
latest code is
successfully
stored and
saved in a file,
ready to be
continued on at
any time the
user chooses.

1. As
expected

Standby and
await as more
developments or
changes are
made.

23

file for later
use.

13 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Disable
Submission

To see if
after a user
submitted
their code
an animated
loading
circle is
present
along with a
temporary
disabling of
the
“Compile
and Run”
button.

Tester:
Herman

1. After
user
pushes
button

1. The user is
presented with a
loading
animation while
they wait
momentarily for
code to be
processed, as
well as no longer
being able to
press the
“Compile and
Run” button to
prevent possible
errors from
occuring.

1. As
expected

Standby and
await as more
developments or
changes are
made.

14 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Enable
Submission

To see if the
“Compile
and Run”
button is
enabled
again after
the page is
refreshed
and results
are
presented
to the user.

Tester:
Herman

1. After
refresh

1. The user is
able to press the
“Compile and
Run” button
again to submit
future changes
to their work.

1. As
expected

Standby and
await as more
developments or
changes are
made.

15 Environmen
t Page
Subsystem
/
Component
Testing

environme
nt.html

Upload File To see if a
user is able
to upload a
Python file
(.py) and
have code
uploaded in
the code
editor.

Tester:
Herman

1. File is a
.py file.

2. File is
not a .py
file.

1. Code is
placed in the
code editor.

2. File will be
rejected.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

16 Account
Manageme
nt
Subsystem
/
Component
Testing

signup.htm
l

Sign Up
Page render

To see if the
user is
presented
with the
form to
input
information
to create
their own
account.

1. A non
logged in
user

2. A logged
in user

1. The not
logged in user
will see the form
and can fill out
information
needed to create
an account.

2. A logged in
user clicking a
link to this
template will be

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

24

redirected to the
homepage.

17 Account
Manageme
nt
Subsystem
/
Component
Testing

signup.htm
l

Student
Account
Creation

To see if a
user
creating an
account
selected the
‘Student’
option an
additional
field will be
presented
that a user
can input a
class code
into.

1. A non
logged in
user
creating a
student
account.

2. A non
logged in
user
creating an
instructor
account.

1. The user
creating an
account who
selected the
‘Student’ option
will be able to
see a new field
to input a code
given by their
instructor.

2. A user has the
‘Instructor’
button selected
they will not be
presented with
the additional
field.

1. TBA

2. As
expected

Wait for
implementation,
as well as
standby and
await as more
developments or
changes are
made.

18 Account
Manageme
nt
Subsystem
/
Component
Testing

signup.htm
l

Sign Up
Field Validity

To see if a
user
creating an
account has
to place
relevant
information
into the
fields in
order to
create the
account.

1. User
inputting
valid
information.

2. User
inputting
invalid
information.

1. Users will be
able to press the
sign up button.

2. The user will
be told of
error(s) in the
field(s) and will
have to change
to a valid input
before being
able to press the
sign up button.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

19 Account
Manageme
nt
Subsystem
/
Component
Testing

login.html Render
Login Page

To see if the
fields are
visible to
the user in a
clean format
on the login
page.

1. A non
logged in
user.

2. A logged
in user

1. The user will
be presented
with fields to
input their
credentials as
well as a few
other account
related buttons.

2. A logged in
user will be
redirected to the
home page.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

20 Account
Manageme
nt
Subsystem
/

reset-pass
word.html

Recover
Account

To see if a
user is able
to recover
their
account

Tester:
Zach

1. A user
requests an

1. The user will
be sent a link to
click on which
allows them to
change their

1. TBA Wait for
implementation.

25

Component
Testing

credentials
through
email.

email to be
sent to
change
their
password
to recover
their
account.

password.

21 Account
Manageme
nt
Subsystem
/
Component
Testing

login.html User Login
Field Validity

To see if the
user is able
to
successfully
log in to
their
account.

Tester:
Zach

1. User
inputs
invalid
information.
.

2. User
inputs valid
field
information.

1. The user will
be displayed an
error message
telling them that
the fields
contained invalid
information and
will alert the user
to input valid
information.

2. The user will
either be logged
in or met with an
error depending
on if the
credentials
inputted
matched the
database.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

22 Account
Manageme
nt
Subsystem
/
Component
Testing

login.html User Login To see if the
user is able
to
successfully
log in to
their
account

Tester:
Zach

1. User
inputs
invalid
credentials.

2. User
inputs valid
credentials

1. User is
displayed with
an error stating
incorrect email
or password.

2. User is logged
in and redirected
to the
homepage.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

23 Account
Manageme
nt
Subsystem
/
Component
Testing

login.html User
Session

To see if a
user has an
active
session.

Tester:
Zach

1. User is
logged in

1. The user is
logged in and
has access to
the
environments
made available
to them.

1. As
expected

Standby and
await as more
developments or
changes are
made.

24 Submission
Processing
Subsystem
/
Component

Submissio
n handling

Submission
Validation

To ensure
the user is
using the
correct
environment

Tester:
Zach

1. The user
is using the

1. Submit
correctly

2. Error in
terminal

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

26

Testing for their
submission.

correct
environmen
t.

2. The user
is not using
the correct
environmen
t.

25 Submission
Processing
Subsystem
/
Component
Testing

Submissio
n handling

Save Video
Data

To see if
video data
is saved to
be able to
display it to
the user.

Tester:
Zach

1. The
video data
is saved

2. The
video data
is not
saved

1. Video
presented to the
user on refresh.

2. Error in
terminal

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

26 Submission
Processing
Subsystem
/
Component
Testing

Submissio
n handling

Submission
Textual
Output

To see if the
web server
will display
textual
output to
the user,
including
error
messages.

Tester:
Zach

1. There is
an error in
the user’s
code

2. There is
no error in
the user’s
code

1. Error
messages will
be displayed
helping the user
find where the
mistake was.

2. Any output
produced by the
code will be
outputted as
normal.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

27 Submission
Processing
Subsystem
/
Component
Testing

Submissio
n handling

Submission
Visual
Output

To see if the
web server
will display
the video /
visual
results to
the user.

Tester:
Zach

1. The user
has not
submitted
any code.

2. The user
has
submitted
code.

1. By default the
visual will be
there when they
open the
environment.

2. An error in the
code will still
display a visual
to the user,
although it won’t
be of the user
completing the
objective.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

28 Submission
Processing
Subsystem
/
Component

Submissio
n handling

Log Results To see if the
submission
results are
logged.

Tester:
Zach

1. Data is
logged and

1. Logs are
successfully
created.

1. As
expected

Standby and
await as more
developments or
changes are
made.

27

Testing recorded
on the
backend.

29 Submission
Processing
Subsystem
/
Component
Testing

Submissio
n handling

Check
Objective

To
determine if
the user has
successfully
completed
the
environment
’s objective.

Tester:
Zach

1. The user
completed
the
environmen
t’s
objective.

2. The user
did not
complete
the
environmen
t’s
objective.

1. Upon
successfully
achieving the
objective for the
environment the
status will be set
to ‘Completed’.

2. Upon any
submission that
does not
complete the
objective the
user’s status will
be set to
‘Started’’.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

30 Submission
Processing
Subsystem
/
Component
Testing

Submissio
n handling

Update
Progress

To see if the
progress of
the user is
successfully
stored as
well as
updated for
the user
and
instructor to
see.

Tester:
Zach

1. User has
not started
the
environmen
t.

2. User has
started the
environmen
t but has
not
successfull
y
completed
it.

3. The user
has
completed
the
environmen
t.

1. The user who
has not started
or submitted
anything in an
environment will
have the status
of ‘Not Started’
which appears
as a blank
loading bar.

2. Upon any
submission that
does not
complete the
objective the
user’s status will
be set to
‘Started’’.

3. Upon
successfully
achieving the
objective for the
environment the
status will be set
to ‘Completed’

1. As
expected

2. As
expected

3. As
expected

Standby and
await as more
developments or
changes are
made.

31 Submission
Processing
Subsystem
/
Component

Submissio
n handling

Lock
Progress

To see if a
user who
has
‘Completed’
an

Tester:
Zach

1. User
alters code

1. User’s
‘Completed’
status for the
environment will
stay the same

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

28

Testing environment
is able to
play around
in the
environment
but not
regress the
status to an
uncomplete
d one.

in an
environmen
t and does
not meet
the
objective.

2. User
alters code
in the
environmen
t and
completes
it.

even if their
latest
submission
failed to meet
the objective.

2. User’s status
will remain
‘Completed’ if
they manage to
complete it a
second time
despite using
different code.

32 Database
Subsystem
/
Component
Testing

Database
System

Store User To see if a
user’s data
from the
signup page
are stored
in the
database.

Tester:
Zach

1. User’s
data is
stored
successfull
y and is
able to be
queried
from the
database.

2. User
Data is not
able to be
stored or
queried
from the
database

1. User data is
stored in the
database and is
able to login as
well as submit
code in
environments.

2. Error in
console.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

33 Database
Subsystem
/
Component
Testing

Database
System

Hash
Password

To see if a
password
from the
signup page
is
successfully
converted
and stored
as a hash.

Tester:
Zach

1. User’s
password is
successfull
y hashed
and stored
in the
database.

1. Password is
no longer
readable and will
be compared
with the hash of
whatever the
user inputs for
the password
field on login.

1. As
expected

Standby and
await as more
developments or
changes are
made.

34 Database
Subsystem
/
Component
Testing

Database
System

Check User To check if
a user is
distinguisha
ble from
other users.

Tester:
Ryan

1. A
specific
user is
distinguisha
ble in the

1. The user is
distinguishable
and will be able
to submit code in
environments.

1. As
expected

Standby and
await as more
developments or
changes are
made.

29

database.

35 Database
Subsystem
/
Component
Testing

Database
System

Check
Environment

To check if
an
environment
is
distinguisha
ble from
other
environment
s.

Tester:
Ryan

1. A
specific
environmen
t is
distinguisha
ble in the
database

1. The
environment is
distinguishable
and will be able
to potentially
accomplish
objectives..

1. As
expected

Standby and
await as more
developments or
changes are
made.

36 Database
Subsystem
/
Component
Testing

Database
System

Prevent Bad
Overwrite

To see if a
submission
with less
progress is
not saved
over a
submission
with more
progress
towards the
objective.

Tester:
Ryan

1. A user
submits
code that
makes
more
progress.

2. A user
submits
code that
makes less
progress.

1. Database
saves the result.

2. Database
does not save
the result.

1. As
expected

2. As
expected

Standby and
await as more
developments or
changes are
made.

37 Browser /
Integration
Testing

Browser
Compatibili
ty

Chrome
Compatibility

To see if
WARE is
compatible
with
Chrome
web
browser.

Tester:
Ryan

1. WARE is
accessed
from
Chrome

1. Browser
displays
everything
correctly and in
a user friendly
way.

1. As
expected

Standby and
await as more
developments or
changes are
made.

38 Browser /
Integration
Testing

Browser
Compatibili
ty

Microsoft
Edge
Compatibility

To see if
WARE is
compatible
with
Microsoft
Edge web
browser.

Tester:
Ryan

1. WARE is
accessed
from
Microsoft
Edge

1. Browser
displays
everything
correctly and in
a user friendly
way.

1. TBA Wait for
implementation.

39 Browser /
Integration
Testing

Browser
Compatibili
ty

FireFox
Compatibility

To see if
WARE is
compatible
with Firefox
web
browser.

Tester:
Ryan

1. WARE is
accessed
from
Firefox

1. Browser
displays
everything
correctly and in
a user friendly
way.

1. As
expected

Standby and
await as more
developments or
changes are
made.

40 Database & Intersyste Database To see if the Tester: 1. The user will 1. TBA Wait for further

30

Process
handling /
Integration
Testing

m
compatibili
ty testing.

and Process
Handling
compatibility

database
system and
the Process
handling
system
work
successfully
together.

Ryan

1.
Database is
able to
successfull
y store and
manage
user
submission
s

2.
Database is
not able to
successfull
y store and
manage
user
submission
s

be able to have
code saved as
well as being
able to see
results from
submitted code.

2. Severe error -
the user will not
be able to do
what the website
expects of the
user.

2. TBA
implementation
and component
tests.

41 Database &
Account
manageme
nt /
Integration
Testing

Intersyste
m
compatibili
ty testing.

Database
and Account
managemen
t
compatibility

To see if the
database
system and
the account
manageme
nt system
work
successfully
together.

Tester:
Zach

1.
Database is
able to
successfull
y store and
manage
user
accounts
and
information
relating to
it.

2.
Database is
not able to
successfull
y store and
manage
user
accounts
and
information
relating to
it.

1. The user will
be able to create
an account,
recover an
account, and
access
environments.

2. Severe error -
the user will not
be able to
access the
majority of the
website
including
environments.

1. TBA

2. TBA

Wait for further
implementation
and component
tests.

42 Database &
Account
manageme
nt & User

Intersyste
m
compatibili
ty testing.

Website
Functionality

To see if all
the main
systems of
the website

Tester:
Ryan

1. All

1. The website is
fully operational
and just needs
minor tweaking

1. TBA

2. TBA

Wait for further
implementation
and component
tests.

31

manageme
nt /
Acceptance
Testing

work
successfully
together
and create
a working
product.

systems
and
subsystems
work
together
perfectly.

2. All
systems
and
subsystems
do not work
together
perfectly.

or changes.

2. Severe error -
the website is
not fully
operational and
will not be able
to perform
functions that
must be
completed from
the student
perspective as
well as from the
instructor
perspective.

6. Contributions of team members
● Outline the contribution of each team member on this document (specific activities

or parts and amount of time spent, in hours).

Sean

Time spent: 5 hours

Sean worked on the User Stories and Acceptance Criteria section.

Ryan

Time spent: 5 hours

Ryan worked on the testing strategy section and created the testing plan.

Herman

Time spent: 1 hour

Herman helped write the Project and Updates section.

Zach

Time spent: 5 hours

32

Zach drafted the abstract, helped write the Project Updates and Changes section, and
wrote the Testing Workflows.

33

