

WARE
Web Application for Robotics Education

University of Nevada, Reno

Department of Computer Science and Engineering

Design Document

Team 17

Zachery Wiles, Ryan Lunt, Sean Griffith, Herman Hira

Instructors: Sergiu Dascalu and Devrin Lee

External Advisor: Ben Gallagher

November 17, 2020

1

Table of Contents
1. Abstract .. 2

2. Introduction ... 2

3. High-level and Medium-level Design ... 3

3.1. System-level Diagram ... 3

3.2. Program Unit Structure ... 4

3.3. Data Structures .. 16

4. Detailed Design ... 18

4.1. User Login ... 18

4.2. Student Information ... 19

4.3. Code Submission ... 20

4.4. Environment Selection .. 21

5. User Interface Design .. 22

5.1. Home Page .. 22

5.2. Environments Page ... 24

5.3. Account Creation Page ... 26

5.4. User Login Page ... 29

5.5. Single Environment Page ... 32

5.6. Student’s Portal Page ... 34

5.7. Instructor’s Portal Page .. 36

6. Contributions of Team Members .. 39

2

1. Abstract
WARE is a robotics learning web application developed for students taking robotics classes. The
goal of WARE is to give students a live coding experience to learn and interact with, while
minimizing performance costs associated with compilation activities. WARE will comprise
multiple learning environments in which students can learn and test their code. In a classroom
format, instructors can evaluate student performance to gauge how well the students are
learning the concepts. In addition, WARE will be optimized to run on low power devices such as
smartphones and tablets to give students more opportunities to interact with the platform. The
application will be built with HTML, Bootstrap libraries, JavaScript, Flask, and an SQL variant.

2. Introduction

This project focuses on the creation of a web application to be utilized by students to be able to
better understand robotics and robotics-based principles by interacting and experimenting with
several robotic-based environments. Since the last report, the specifications for this project have
been made abundantly clear and requirements have been further solidified. Upon turning in our
specification, we sent the sponsor of this project, Dr. Rui Wu, a copy so we could hold a meeting
about the report. During the meeting, we discussed the strengths and weaknesses of the report,
the areas in which we could improve, and what components we should focus on to begin the
project. Additionally, we have revised the user interfaces that were originally created. We also
went over requirements regarding us needing to host a webserver which we believe we have
covered. While having a better understanding of our project as a whole is no doubt a step in the
right direction, it comes with the many daunting realizations of the obstacles and challenges that
lay ahead of us in creating this sort of application.

Overall, the main goal for this project is to be able to set up a web platform that communicates
with a back-end web server to compile and execute user uploaded code and output the results
to the user. The results are not just textual - but also a visual representation of what the code
does. Another important goal we have is creating an accessible web application to allow students
with any type of device to be able to access and use this resource in a simple and easy to use
manner. For the time being we plan on following Dr. Wu’s biggest advice to us - which is to try
to implement the frontend-backend communication with regards to user submitted Python code
as soon as we can as that is the core of this project.

3

3. High-level and Medium-level Design
The following diagrams and explanations give an overview of the architecture, subsystems, and
program units that comprise the WARE application.

3.1 System Level Diagram
WARE is best characterized as having a layered architecture. The user accesses a front-end
webpage. A back-end server processes information sent from the front-end webpage. For
permanent storage, a database is utilized to store user and environment information for future
access.

Figure 3.1: A layered architecture is presented in which there are three layers.

4

3.2 Program Unit Structure

Figure 3.2.1: Call diagram for WARE program units. This diagram depicts the organization of
program units and their associated unit calls within the WARE system.

5

Unit Name: RenderHomePage

Description This function generates the WARE home page using a stylized HTML
template that includes a brief website description and links to the login and
account creation pages.

Subsystem Back-end server

Input HTTP GET request

Output HTTP response containing WARE home page data

Unit Calls None

Exceptions Failure to access the home page template will result in HTTP 500 internal
server error.

Comments Once the home page has been rendered, a user will be presented with a
brief website description as well buttons that redirect the user to either
the account creation page or the login page.

Unit Name: RenderAccountCreation

Description This function generates the WARE account creation page using a stylized
HTML template that includes the account creation form.

Subsystem Back-end server

Input HTTP GET request

Output HTTP response containing WARE account creation page data

Unit Calls HandleAccountCreation

Exceptions Failure to access the account creation page template will result in HTTP 500
internal server error.

Comments Once the account creation page has been rendered, the user will have
access to a registration form containing fields for their account information
(first name, last name, email, class ID, password, confirmation of password,
and account type). Once form data is filled out, the user may submit the
form and attempt registration.

6

Unit Name: RenderUserLogin

Description This function generates the WARE login page using a stylized HTML
template that includes a login form.

Subsystem Back-end server

Input HTTP GET request

Output HTTP response containing WARE login page data

Unit Calls HandleUserLogin

Exceptions Failure to access the login page template will result in HTTP 500 internal
server error.

Comments Once the login page has been rendered, the user will have access to a login
form containing fields for their account information (email and password).
Once form data is filled out, the user may submit the form and attempt
login.

Unit Name: RenderInstructorPortal

Description This function generates an instructor portal from an HTML template
customized with a description of the instructor’s class, and a list of all
environments associated with that class.

Subsystem Back-end server

Input HTTP GET request

Output HTTP response containing the instructor’s user portal data

Unit Calls FetchClassInfo, FetchUserEnvironments, FetchStudentInfo

Exceptions Failure to access the instructor portal template will result in HTTP 500
internal server error.

Comments Once the instructor portal has been rendered, the instructor will be able to
select an environment, view a specific student’s progress in an
environment, or create a class.

7

Unit Name: RenderStudentPortal

Description This function generates a student portal from an HTML template
customized with the student’s class description, active environments and
associated progress in those environments.

Subsystem Back-end

Input HTTP GET request

Output HTTP response containing the student’s user portal data

Unit Calls FetchClassInfo, FetchUserEnvironments

Exceptions Failure to find class info or environments will return HTTP 404 not found.
Failure to access the student portal template will result in HTTP 500
internal server error.

Comments Once the student portal has been rendered, the student will be able to
select an active environment for experimentation or view the full
environment list.

Unit Name: RenderEnvironmentList

Description This function generates the WARE environment list using a stylized HTML
template that includes a listing of all environments associated with a user
account.

Subsystem Back-end

Input HTTP GET request

Output HTTP response containing a list of available environments

Unit Calls FetchUserEnvironments

Exceptions Failure to find environments associated with the user will return HTTP 404
not found. Failure to access the environment list template will result in
HTTP 500 internal server error.

Comments Upon the environment list being rendered the user will be able to view a
selection of environments with their respective titles, thumbnails, and
previews.

8

Unit Name: RenderEnvironment

Description This function generates the environment selected by the user.

Subsystem Back-end

Input HTTP GET request

Output HTTP response containing specific information, data, and details regarding
a single environment

Unit Calls FetchLastSubmission

Exceptions Failure to find environment data for the selected environment or an
attempt to access an unassigned environment will return HTTP 401
unauthorized. Failure to access the environment template will result in
HTTP 500 internal server error.

Comments Upon the environment being rendered the user will be able to enter
python code as well as being able to view the textual and visual result
panels of the robotics environment.

Unit Name: FetchUserEnvironments

Description This function queries the database for a list of environments associated
with a specified user.

Subsystem Database

Input User ID (UID)

Output List of environments associated with the user

Unit Calls None

Exceptions Failure to find environments associated with the user will return HTTP 404
not found.

Comments The list of user environments returned will depend on the class in which
the user is participating in.

9

Unit Name: HandleAccountCreation

Description This function ensures valid account form data as well as that each account
created is unique. If the form is valid, a user id is generated for the account
and it is submitted to the database. If the form is invalid, the request for
registration is denied and the user notified.

Subsystem Back-end server

Input HTTP POST request containing account creation form data

Output HTTP response confirming outcome of registration request

Unit Calls None

Exceptions Failure to validate account creation form data will return HTTP 400 bad
request.

Comments Once a registration attempt is validated, the password is salted and hashed
before storage in the database to ensure security of user information.

Unit Name: HandleUserLogin

Description This function compares account credentials submitted through login form
to the account credentials stored within the user database table (Table
3.3.1) to validate or invalidate the login attempt.

Subsystem Back-end server

Input HTTP POST request containing login form data

Output HTTP response confirming outcome of login request

Unit Calls RenderStudentPortal, RenderInstructorPortal

Exceptions Excessive login attempts will return HTTP 429 too many requests.

Comments Upon a successful login, the user will be redirected to their user portal.
Upon an unsuccessful login, the user will be notified of the failed login
attempt and asked to retry.

10

Unit Name: HandleUserLogout

Description This function enables the user to logout of their account and redirects them
to the WARE homepage

Subsystem Back-end server

Input HTTP POST request

Output HTTP Response confirming successful logout request

Unit Calls RenderHomepage

Exceptions Failure to detect an active user session will immediately exit this unit.

Comments Upon a successful logout the user will be signed out of his current session
and redirected to the WARE homepage.

Unit Name: ProcessSubmission

Description This function processes a user’s Python code submission and returns
results of submission.

Subsystem Back-end server

Input HTTP POST request containing user submitted code

Output HTTP response containing the textual and visual results from executing a
user’s code submission.

Unit Calls ValidateSubmission, ExecuteSubmission, UpdateProgress,
CacheSubmission, RenderEnvironment

Exceptions Failure to validate the request will return HTTP 400 bad request.

Comments This function will update the user’s progress in the environment after
submission, and save the most recent submission for querying by the
instructor student who made the submission.

11

Unit Name: ValidateSubmission

Description This function validates code submitted to the web server by a user to
ensure file type, valid file data, and the inclusion of environment-related
library calls.

Subsystem Back-end server

Input User submitted code

Output Validation or invalidation flag based on validity of user code

Unit Calls None

Exceptions Failure to recognize file type or data will raise an exception and exit the
unit without validating the submission.

Comments Upon successful validation, the user’s code submission continues
processing. Upon unsuccessful validation, the user is notified.

Unit Name: ExecuteSubmission

Description This function encapsulates a user’s code submission in a separate process,
executes the submission to capture results, and returns formatted results
for user viewing.

Subsystem Back-end server

Input Validated user code submission

Output Formatted results from executing the user’s submission

Unit Calls FormatResults

Exceptions If an exception occurs during submission execution, it is captured for
display to the user and execution is aborted.

Comments Once user code has been executed and results are formatted, the results
will be returned to the process submission unit for display to the user.

12

Unit Name: FormatResults

Description This function evaluates results generated during the execution of the
submitted code and separates them into textual and visual results.

Subsystem Back-end server

Input Unformatted results of executing the user submission

Output Formatted textual and visual results of executing the user submission

Unit Calls GenerateGIF

Exceptions Unexpected result values will halt execution of the unit and invalidate the
submission.

Comments Once the unformatted results are received during the execution of
submitted code, the formatted results are returned for display to the user.

Unit Name: GenerateGIF

Description This function compiles visual results generated throughout the execution
of user submitted code into a GIF file for visualizing the environment
throughout execution to the user.

Subsystem Back-end server

Input Visual results of executing the user submission

Output GIF data to visualize the environment throughout execution

Unit Calls None

Exceptions Failure to recognize visual results interrupts this unit and returns a preview
image for the associated environment.

Comments If no visual data is received, this unit is aborted and the preview image for
the associated environment is returned.

13

Unit Name: CacheSubmission

Description This function will save the user’s validated code submission to the
database for later use by the student, or for analysis by the instructor.

Subsystem Database

Input Validated user code submission, Environment ID (EID), User ID (UID)

Output Result of caching attempt (success or failure)

Unit Calls None

Exceptions Failure to store a submission due to file size will halt the unit and notify
the user.

Comments Only one submission per user may be saved to the database, if more than
one submission is made, the latest submission replaces the prior
submission.

Unit Name: UpdateProgress

Description This function will update the current progress percentage and progress bar
for an environment.

Subsystem Database

Input Validated user code submission, Environment ID (EID), User ID (UID)

Output Percentage value

Unit Calls None

Exceptions Failure to update progress will halt the unit and notify the user.

Comments Updates the percent complete value for a student in an environment.

14

Unit Name: FetchLastSubmission

Description This function will retrieve a specific student’s last code submission in a
certain environment.

Subsystem Database

Input User ID (UID), Environment ID (EID)

Output Textual data for the student’s last submission

Unit Calls None

Exceptions Failure to retrieve last submission returns HTTP 404 not found

Comments Data for the student’s last submission remains in the database.

Unit Name: FetchStudentInfo

Description This function will retrieve metadata relating to a specific student as well as
that student’s progress in each environment associated with their class.

Subsystem Database

Input User ID (UID)

Output Student metadata, progress in assigned environments

Unit Calls None

Exceptions Failure to retrieve student info returns HTTP 404 not found.

Comments This function can only be called by a user with the instructor role.

15

Unit Name: RenderClassCreation

Description This function generates the class creation page using a stylized HTML
template that includes the class creation form.

Subsystem Back-end server

Input HTTP GET request

Output HTTP response containing class creation page data

Unit Calls HandleClassCreation

Exceptions Failure to access the class creation page template will result in HTTP 500
internal server error.

Comments Upon the class creation page being rendered the user will have a form with
various fields to fill out - including class name, and environments chosen.

Unit Name: HandleClassCreation

Description This function ensures valid class form data as well as that each class created
has a unique name. If the form is valid, a class id is generated for the class
and it is submitted to the database. If the form is invalid, the request for
registration is denied and the instructor notified.

Subsystem Back-end server

Input HTTP POST request containing class creation form data

Output HTTP response confirming outcome of registration request

Unit Calls None

Exceptions Failure to validate class creation form data will return HTTP 400 bad
request.

Comments This function can only be called by a user with the instructor role.

16

Unit Name: FetchClassInfo

Description This function will retrieve metadata related to the specified class ID, as well
as metadata for any environment associated with that class.

Subsystem Database

Input Class ID (CID)

Output Class metadata including name, associated environments

Unit Calls None

Exceptions Failure to retrieve class info returns HTTP 404 not found.

Comments Class info cannot be changed by users after the class has been instantiated,
however, it is available to all users (student or instructor) participating in
the class.

3.3 Data Structures

User account information will be tracked using a database table utilizing the fields shown in
table 3.3.1. New entries will be added to this database table as new users register to the
system. Each user will have an associated user id (uid) generated for their account to
accommodate a change in the user’s email address used to access the website and will act as a
primary key.

User Database Table Schema

Value uid first_name last_name cid password user_type email

Type <int> <string> <string> <int> <string> <string> <string>

Table 3.3.1: Database table template including attributes and their respective types for user
information (uid: User ID, cid: Class ID).

Class information will be tracked using a database table utilizing the fields shown in table 3.3.2.
New entries will be added to this database table as users with the instructor role create them
from their user portal. Each class will have an associated class id (cid) generated for it that
instructors can distribute to their students to allow them to register for the class when creating
their account, and will act as a primary key.

17

Class Database Table Schema

Value cid class_name instructor_name environment_list

Type <int> <string> <string> <list<int>>

Table 3.3.2: Database table template including attributes and their respective types for class
information (cid: Class ID).

Environment specific information will be tracked using a database table utilizing the fields
shown in table 3.3.3. This database table will contain information critical to the display of each
environment including the name, descriptions, and the filename of the preview image for that
environment’s display. Each environment will have an associated environment ID (eid) that will
act as a primary key.

Environment Database Table Schema

Value eid name brief_description description preview_filename

Type <int> <string> <string> <string> <filename>

Table 3.3.3: Database table template including attributes and their respective types for
environment information (eid: Environment ID).

Student progress will be tracked using a database table utilizing the fields shown in table 3.3.4.
This database table will be updated when a user submits their code within an environment, and
is primarily used to track user progress in each environment. Additionally, the most recent code
submission made by a user will be stored to allow a user to save their code for future use as
well as for an instructor to review. Within this database table, the user id (uid) field will act as a
primary key, with an associated environment id (eid) acting as a foreign key that can be used to
reference the environment database table (Table 3.3.3).

Student Progress Database Table Schema

Value uid eid progress last_submission_path submission_date

Type <int> <int> <float> <filepath> <datetime>

Table 3.3.4: Database table template including attributes and their respective types for student
progress data (uid: User ID, eid: Environment ID).

18

4. Detailed Design
The following diagrams illustrate the user login, student information, code submission, and
environment selection processes that are fundamental to the operation of WARE.

4.1 User Login
The sequence diagram shown in Figure 4.1 depicts the user login process, which involves the user
inputting and submitting login credentials. The back-end server authenticates the user with the
credentials and either allows or denies the user access.

Figure 4.1: Sequence diagram for the user login process.

19

4.2 Student Information
The sequence diagram shown in Figure 4.2 shows the student information process, which
allows an instructor to view information pertaining to a specific student including their progress
in an environment and their last submission.

Figure 4.2: Sequence Diagram for the process of viewing student information.

20

4.3 Code Submission
The activity diagram shown in Figure 4.3 depicts the process for handling user submitted code.
This process includes the receipt of user code, the validation process, execution of user code,
the generation of visual and textual results for display to the user, updating user progress, and
caching the submission.

Figure 4.3: Activity Diagram for the code submission process.

21

4.4 Environment Selection
The environment selection process allows a user to select a robotics environment.
Furthermore, it allows a user to return to a previously visited environment to restore their
progress.

Figure 4.4: State Diagram for the environment selection process

22

5. User Interface Design

5.1 Homepage
The desktop homepage is presented to a user who is currently not signed in. The homepage tells
the user about WARE and gives a call-to-action button to become a member. Existing users have
the option to login by clicking the respective button on the right hand side. The mobile view of
the homepage features a collapsed navigation bar that is accessible by the menu button on the
right hand side. The part of the navigation bar that is displayed is fixed and stays in place on scroll.

Figure 5.1.1: The desktop view of the WARE homepage.

23

Figure 5.1.2: The mobile view of the homepage.

24

5.2 Environments Page

The environments page is accessible only to registered users. The user’s name is displayed on the
right hand side of the navbar. Each environment available indicates to the user the amount of
progress made by the user. The mobile version presents the environment cards vertically aligned
and stacked on top each other. The remaining cards on the mobile view are accessed by scrolling
down on the page.

Figure 5.2.1: The desktop version of the environments page.

25

Figure 5.2.2: The mobile view of the environments page.

26

5.3 Account Creation Page
The account creation page presents a form to the user to fill out to create an account. Options
are given as to the type of account that will be created. If a Student type is chosen, then a
Classroom ID field will be presented. The form will be validated before the contents are sent to
the back-end server. If there are errors in the form data, appropriate feedback will be given to
the user to assist in fixing these errors before retrying the submission.

Figure 5.3.1: The desktop view of the account setup page.

27

Figure 5.3.2: Form validation for creating an account.

28

Figure 5.3.3: The mobile view of the account creation page.

29

5.4 User Login Pages

The user login page presents fields for the email address and password to sign in. The student
login page and the instructor login page are similar in design. For both of these pages, an
additional button is given below the login form to navigate to the other login page if the user
accidentally navigated to the wrong one.

Figure 5.4.1: The desktop view of the student login page.

30

Figure 5.4.2: The mobile view of the student login page.

31

Figure 5.4.3: The desktop view of the instructor login page.

32

5.5 Single Environment Page

The single environment page is where the user will spend the majority of their time on this
website. This is where programming and learning takes place. The left side is where the user
will code in Python with buttons to either upload the code to the web server for testing and
results or to submit it to potentially complete the lab. The upper right is the visual output with
regards to the robot. Lastly, the bottom right is for the textual output.

Figure 5.5.1: The desktop view of the single environment page.

33

Figure 5.5.2: The mobile view of the single environment page. While a bit compact due to

having to cram everything from the prior picture onto a small screen, the user will be able to
receive the same experience and knowledge as if they were on a desktop.

34

5.6 Student’s Portal Page

The student’s portal page is effectively the homepage of student-based accounts. Here
students will have access to their class’s respective environments - as well as having the ability
to view all environments we have to offer.

Figure 5.6.1: The desktop view of the student’s portal page - displaying the class the user is

registered to with its respective environments.

35

Figure 5.6.2: The mobile view of the student’s portal page.

36

5.7 Instructor’s Portal Page

The instructor’s portal page is effectively the home page of the instructor. Here they will be
able to create classes for students to join, select which environments students will utilize, and
also be able to see student’s progress throughout each environment.

Figure 5.7.1: The desktop view of the instructor’s portal. Displays all classes created with their
respective environments as well as letting the instructor view progress of his students for each

environment.

37

Figure 5.7.2: The mobile view of the instructor’s portal.

38

Figure 5.7.3: The desktop view of the class creation form. The instructor can select a class name

and choose which environments will be related to the class.

39

6. Contributions of Team Members
The team’s contributions are summarized below. The name of each team member, the time each
member allocated for this assignment, and the tasks that were completed are given.

Sean Griffith
Total time commitment: 14 hours
Created the table of contents, designed the program unit structure diagram, created most of
the unit tables, generated the data structures and their respective table templates, and
designed the diagrams for the user login and code submission processes.

Zachery Wiles
Total time commitment: 10.5 hours
Drafted the abstract section, designed the system-level diagram; created the homepage,
environments, account creation, and user login webpage design mockups. Contributed to the
whole design of the document.

Ryan Lunt
Total time commitment: 9.5 hours
Helped create some of the unit tables, created the single environment page, instructor portal,
student portal, and class creation webpage design mockups.

Herman Hira
Total time commitment: 4 hours
Drafted the introduction section, designed the instructor view and environment selection
diagrams

