
 

WARE 
Web Application for Robotics Education 

University of Nevada, Reno 

Department of Computer Science and Engineering 

Revised Specification and Design 

 Team 17 

Zachery Wiles, Ryan Lunt, Sean Griffith, Herman Hira 

  

Instructors: David Feil-Seifer and Devrin Lee 

 

Project Sponsor  
Dr. Rui Wu  

Associate Professor 
East Carolina University 

External Advisor  
Ben Gallagher 

Security Analyst 
University of Nevada, Reno 

February 26, 2021 

 



 

Table of Contents 
1. Abstract 2 

2. Recent Project Changes 2 

3. Updated Specification 2 
3.1 Summary of Changes in Project Specification 2 
3.2 Updated Technical Requirements Specification 3 

3.2.1 Functional Requirements 3 
3.2.2 Non-Functional Requirements 5 
3.2.3 Requirements Pertaining to Hardware 5 

3.3 Updated Use Case Modeling 6 
3.3.1 Use Case Diagram 6 
3.3.2 Detailed Use Case Descriptions 7 
3.3.3 Updated Requirement Traceability Matrix 8 

4. Updated Design 10 
4.1 Summary of Changes in Project Design 10 
4.2 Updated High-level and Medium-level Design 10 

4.2.1 System-level Diagram 11 
4.2.2 Program Units 12 
4.2.3 Data Structures 23 

4.3 Updated Hardware Design 25 
4.4 Updated User Interface Design 26 

5. Updated Glossary of Terms 34 

6. Engineering Standards and Technologies 36 

7. Project Impact and Context Considerations 40 

8. Updated List of References 40 
8.1 Problem Domain Book 40 
8.2 Reference Articles 41 
8.3 Websites 41 

9. Contributions of Team Members 43 

 

 

1 



 

1. Abstract 
WARE is a website dedicated to providing users with an interactive way to use 

the OpenAI Gym robotics framework. The OpenAI Gym framework is an open-source 
toolkit used for developing reinforcement learning algorithms. WARE combines the 
framework’s robotics environments with a web interface, allowing users to experiment 
with the framework while avoiding the time and complexity of installing and running it on 
a local machine. 

WARE provides eight different robotics environments for users to interact with. 
Users develop their code within the environment and the back-end server processes it 
and outputs the results. WARE also offers user account management, allowing students 
and instructors to create accounts that integrate together to form classrooms.  

 

2. Recent Project Changes 
The only change that has occurred in the project since the last project 

assignment is the addition of requiring users to enter a first and last name in the 
account signup process. These two fields will be stored as part of each user in the user 
database. These fields were added to increase personalization of the website for the 
user and allow instructors to easily identify students in a WARE classroom 

 

3. Updated Specification 
3.1 Summary of Changes in Project Specification 

Since the submission of the original project specification document, our project’s 
requirements have remained largely unchanged. However, as development of each of 
the project components has progressed, the difficulty of implementing various features 
has been reassessed and adjustments to the specification have been made. 
 

Although functional requirements for the WARE project have remained largely 
unchanged, four functional requirements listed in Table 3.2.1.1 were added to the 
project: FR21, FR22, FR23, and FR30. Functional requirements 22 and 23 were added 
to ensure class management functionality, while functional requirements 21 and 30 
were added as a result of our project demonstration to the instructor and our project 
sponsor last semester. Additionally, an original functional requirement, FR19 (WARE 
shall check user input for syntax errors), was removed as this requirement was already 
being met with FR8. 

2 



 

Another change made to the WARE functional requirements was the reordering 
of requirements between priority levels. Functional requirements 16, 17, and 18 were 
moved from priority level 2 to priority level 1, functional requirement 24 was moved from 
priority level 1 to priority level 2, and functional requirements 26 and 27 were moved 
from priority level 2 to priority level 3. 
 

Additionally, as our team continues to refine our understanding of the project’s 
requirements, we have introduced two new use cases: UC05 and UC06, which are 
described in Table 3.3.2.1. These use cases account for the implementation of classes 
within the WARE project. 
 

Finally, our team has revised the requirement traceability matrix designed in the 
original specification document to account for the aforementioned changes to functional 
requirements as well as the addition of use cases 5 and 6. The updated requirement 
traceability matrix can be seen in Figure 3.3.3.1. 

3.2 Updated Technical Requirements Specification 
The technical requirements shown below in Tables 3.2.1.1 and 3.2.2.1 describe the 
updated functional and non-functional requirements of the WARE project. Each 
requirement provided below is tagged with a priority level as follows: 

● [1] - Planned for implementation by the end of this semester (Spring 2021). 
● [2] - Planned for possible implementation by the end of this semester. 
● [3] - Implementation is unlikely to occur this semester. 

3.2.1 Functional Requirements 

3 

FR1. [1] WARE shall allow the user to create an account. 

FR2. [1] WARE shall allow the user to log into their account. 

FR3. [1] WARE shall allow the user to log out of their account. 

FR4. [1] WARE shall allow the user to submit their code to the web server for processing. 

FR5. [1] WARE shall process code submitted by a user to produce an output. 

FR6. [1] WARE shall display to the user textual results of code submitted to the web server. 

FR7. [1] WARE shall display to the user visual results of code submitted to the web server.  

FR8. [1] WARE shall display to the user errors that result from code submitted to the web server. 

FR9. [1] WARE shall track user progress in each robotics environment. 



 

Table 3.2.1.1: Updated Functional requirements for the Web Application for Robotics 
Education (WARE) project. 

 

4 

FR10. [1] WARE shall allow the user to view their progress in each robotics environment. 

FR11. [1] WARE shall allow the user to select a robotics environment. 

FR12. [1] WARE shall display a brief description of each robotics environment to the user. 

FR13. [1] WARE shall display examples of working input for each robotics environment to the 
user. 

FR14. [1] WARE shall display to the user a visual preview for each robotics environment. 

FR15. [1] WARE shall allow the user to input their code through the use of a text box. 

FR16. [1] WARE shall log user sessions and associated interactions over time. 

FR17. [1] WARE shall use python syntax highlighting for code written within the textbox on the 
website. 

FR18. [1] WARE shall save a user’s most recently submitted code for future use. 

FR19. [1] WARE shall allow the user to view environments which they have made progress in 
from their homepage. 

FR20. [1] WARE shall allow the user to input their code through the use of a file upload. 

FR21. [1] WARE shall display to the user a loading icon for the time between when a user submits 
their solution and when that user receives the results of their code. 

FR22. [2] WARE shall allow instructors to create a class for their students to join. 

FR23. [2] WARE shall allow students to join a class created by an instructor. 

FR24. [2] WARE shall allow instructors to choose a list of environments that their students should 
have access to. 

FR25. [2] WARE shall allow instructors to view and run their student’s last code submission in an 
environment. 

FR26. [3] WARE shall check user input for formatting mistakes. 

FR27. [3] WARE shall allow users to make feature requests and report errors. 

FR28. [3] WARE shall implement a representational state transfer application programming 
interface for advanced user interaction. 

FR29. [3] WARE shall allow users to communicate with other students and their instructors within 
each robotics environment. 

FR30. [3] WARE shall provide the user with hints on how to progress with their solution to a 
robotics environment following the submission of a failed solution. 



 

3.2.2 Non-Functional Requirements 

Table 3.2.2.1: Updated Non-Functional requirements for the Web Application for 
Robotics Education (WARE) project. 

3.2.3 Requirements Pertaining to Hardware 

Our project does not currently require the use of hardware for deployment, and 
as such, all functional and non-functional requirements for WARE pertain to its software 
implementation. 

5 

NFR1. [1] WARE will utilize a database to store user information and robotics environments. 

NFR2. [1] WARE will minimize CPU usage and perform intensive computations remotely. 

NFR3. [1] WARE will provide an intuitive and elegant front-end website. 

NFR4. [1] WARE will be compatible with Chromium-based web browsers. 

NFR5. [1] WARE will utilize the Bootstrap, JavaScript, and Flask platforms. 

NFR6. [1] WARE will be fully responsive to accommodate a wide range of devices. 

NFR7. [2] WARE will utilize fully encrypted communications for each user session. 

NFR8. [2] WARE will be compatible with Chromium-based and Firefox web browsers. 

NFR9. [3] WARE will implement accessibility standards to accommodate screen readers and 
users with sight impairments. 

NFR10. [3] WARE will be compatible with Chromium-based, Firefox, and Internet Explorer web 
browsers. 



 

3.3 Updated Use Case Modeling 

3.3.1 Use Case Diagram 

 
Figure 3.3.1.1. Updated Use Case Diagram showing the generalized relationship 

between the Instructor, Student, and User actors as well as their relationships with the 
various use cases. 

 
 

6 



 

3.3.2 Detailed Use Case Descriptions 

7 

ID Use Case Description 

UC01 CreateUser Upon accessing the website homepage, the user has the 
option to create a new account in order to utilize the 
website’s robotics environment labs.  

UC02 LoginUser Upon accessing the website homepage, the user has the 
option to log in to an existing user account. This login 
queries the webserver for the validity of user credentials and 
either grants the user access or denies login.  

UC03 LogoutUser The user may log out of their account and return to the 
website’s homepage at any time, using a “Logout” button.  

UC04 ViewHomepage Students will be able to navigate to their own homepage, 
which will include information on environments they have 
started experimenting with.  

UC05 CreateClass Upon accessing their homepage, instructors will have the 
option to create a class and choose a subset of available 
environments for their students to have access to and 
experiment with. 

UC06 JoinClass Students will be able to join a class created by an instructor 
and engage in the robotics environments assigned to them. 

UC07 ViewEnvironments The user is able to view a list of all available robotics 
environments and their progress in each of them. This list 
includes brief descriptions of each environment. 

UC08 SelectEnvironment Upon accessing the list of available environments, the user 
may select a specific environment, and the user is then 
redirected to the page for that environment.  

UC09 CompleteEnvironment Students will be able to mark a robotics environment as 
completed once experimentation is completed. This option 
will be available from both the user’s homepage and the 
environment list for the user.  

UC10 ChangeInput Upon accessing a specific robotics environment, the user 
may change the provided sample code to fit their 
experimentation needs and develop a unique solution to the 
environment with which they are engaged.  

UC11 UploadFile Upon accessing a specific robotics environment, the user 
may utilize a Python file upload to overwrite the provided 
sample code with code contained in the uploaded file. 



 

 

Table 3.3.2.1: Detailed use case descriptions. 
 
 

3.3.3 Updated Requirement Traceability Matrix 
The Updated Requirement Traceability Matrix for the WARE project can be found 

in Figure 3.3.3.1. Each column of the Requirement Traceability Matrix represents a use 
case of the WARE project, for which details can be found in Table 3.3.2.1. Each row of 
the Requirement Traceability Matrix represents a functional requirement of the WARE 
project, as described in Table 3.2.1.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 

UC12 SubmitCode Upon accessing a specific robotics environment, the user 
may submit code contained in the code input area to the 
server for processing.  

UC13 InstructorView Instructors are able to access any of their students’ code 
and progress for environments which have been assigned, 
accessible from the instructor’s homepage. 

UC14 PlaybackResults Upon receipt of results for code submitted by a user, the 
user is able to view the state of the robotics environment 
throughout the execution of their code.  



 

Figure 3.3.3.1: Updated Requirement Traceability Matrix displaying the relationships between 
use cases and functional requirements. 

 

9 

 UC01 UC02 UC03 UC04 UC05 UC06 UC07 UC08 UC09 UC10 UC11 UC12 UC13 UC14 

FR1               

FR2               

FR3               

FR4               

FR5               

FR6               

FR7               

FR8               

FR9               

FR10               

FR11               

FR12               

FR13               

FR14               

FR15               

FR16               

FR17               

FR18               

FR19               

FR20               

FR21               

FR22               

FR23               

FR24               

FR25               

FR26               

FR27               

FR28               

FR29               

FR30               



 

4. Updated Design 
4.1 Summary of Changes in Project Design 

The project design has not been significantly altered since the original 
specification document. Many of the program units and diagrams are still relevant to the 
current build of the project. Since these elements are integral to the design of the 
project, they have stayed consistent.  

As for the frontend, the style and view was updated. The website now looks more 
modern with a white and blue color palette for simplicity. The environment page was 
also updated to the standard of more modern online code editors, and with a calmer 
color palette. These changes have helped make the website look more professional and 
fresh. 

4.2 Updated High-level and Medium-level Design 
Our prior system-level diagram has managed to withstand the test of time and 

stay up to date. This is because small changes haven’t impacted the fundamental 
sections of our website. As a web application consisting of a front end, back end, and a 
database, it is best to view WARE as a layered architecture. WARE’s core development 
and planning has been held relatively steady without major changes since the last 
semester. Any items that were scrapped or picked up have been minor over the last few 
months. Hence, most of the program units are the same from our prior design 
document. The one that has been updated is the ‘UpdateProgress’ program unit. 
Additionally, a program unit that was added was the ‘UploadFile’ program unit. The 
current up to date system level diagram and program units are shown below in their 
respective sections. 
 

10 



 

4.2.1 System-level Diagram 

 
Figure 4.2.1.1: The layered architecture is broken up into three separate layers. 

 

 

 

 
 
 
 
 

11 



 

4.2.2 Program Units 

 
 

 
 
 

12 

                               Unit Name: RenderHomePage 

Description This function generates the WARE home page using a stylized HTML 
template that includes a brief website description and links to the login 
and account creation pages.  

Subsystem Back-end server 

Input HTTP GET request  

Output HTTP response containing WARE home page data  

Unit Calls None 

Exceptions Failure to access the home page template will result in HTTP 500 
internal server error.  

Comments Once the home page has been rendered, a user will be presented with a 
brief website description as well buttons that redirect the user to either 
the account creation page or the login page.  

                               Unit Name: RenderAccountCreation 

Description This function generates the WARE account creation page using a 
stylized HTML template that includes the account creation form.  

Subsystem Back-end server 

Input HTTP GET request  

Output HTTP response containing WARE account creation page data 

Unit Calls HandleAccountCreation 

Exceptions Failure to access the account creation page template will result in HTTP 
500 internal server error. 

Comments Once the account creation page has been rendered, the user will have 
access to a registration form containing fields for their account 
information (first name, last name, email, class ID, password, 
confirmation of password, and account type). Once form data is filled 
out, the user may submit the form and attempt registration.  



 

 
 

 
 
 
 
 

13 

                               Unit Name: RenderUserLogin 

Description This function generates the WARE login page using a stylized HTML 
template that includes a login form.  

Subsystem Back-end server  

Input HTTP GET request  

Output HTTP response containing WARE login page data 

Unit Calls HandleUserLogin 

Exceptions Failure to access the login page template will result in HTTP 500 internal 
server error 

Comments Once the login page has been rendered, the user will have access to a 
login form containing fields for their account information (email and 
password). Once form data is filled out, the user may submit the form 
and attempt login. 

                               Unit Name: RenderInstructorPortal 

Description This function generates an instructor portal from an HTML template 
customized with a description of the instructor’s class, and a list of all 
environments associated with that class.  

Subsystem Back-end server  

Input HTTP GET request 

Output HTTP response containing the instructor’s user portal data 

Unit Calls FetchClassInfo, FetchUserEnvironments, FetchStudentInfo  

Exceptions Failure to access the instructor portal template will result in HTTP 500 
internal server error.  

Comments Once the instructor portal has been rendered, the instructor will be able 
to select an environment, view a specific student’s progress in an 
environment, or create a class 



 

 
 

 
 
 
 

14 

                               Unit Name: RenderStudentPortal 

Description This function generates a student portal from an HTML template 
customized with the student’s class description, active environments and 
associated progress in those environments.  

Subsystem Back-end  

Input HTTP GET request  

Output HTTP response containing the student’s user portal data 

Unit Calls FetchClassInfo, FetchUserEnvironments 

Exceptions Failure to find class info or environments will return HTTP 404 not found. 
Failure to access the student portal template will result in HTTP 500 
internal server error.  

Comments Once the student portal has been rendered, the student will be able to 
select an active environment for experimentation or view the full 
environment list. 

                               Unit Name: RenderEnvironmentList 

Description This function generates the WARE environment list using a stylized 
HTML template that includes a listing of all environments associated with 
a user account.  

Subsystem Back-end 

Input HTTP GET request  

Output HTTP response containing a list of available environments 

Unit Calls FetchUserEnvironments  

Exceptions Failure to find environments associated with the user will return HTTP 
404 not found. Failure to access the environment list template will result 
in HTTP 500 internal server error. 

Comments Upon the environment list being rendered the user will be able to view a 
selection of environments with their respective titles, thumbnails, and 
previews 



 

 
 

 
 
 
 
 
 

15 

                               Unit Name: RenderEnvironment 

Description This function generates the environment selected by the user 

Subsystem Back-end  

Input HTTP GET request  

Output HTTP response containing specific information, data, and details 
regarding a single environment  

Unit Calls FetchLastSubmission  

Exceptions Failure to find environment data for the selected environment or an 
attempt to access an unassigned environment will return HTTP 401 
unauthorized. Failure to access the environment template will result in 
HTTP 500 internal server error.  

Comments Upon the environment being rendered the user will be able to enter 
python code as well as being able to view the textual and visual result 
panels of the robotics environment.  

                               Unit Name: FetchUserEnvironments 

Description This function queries the database for a list of environments associated 
with a specified user. 

Subsystem Database 

Input User ID (UID) 

Output List of environments associated with the user  

Unit Calls None 

Exceptions Failure to find environments associated with the user will return HTTP 
404 not found.  

Comments The list of user environments returned will depend on the class in which 
the user is participating in.  



 

 
 

 
 
 
 
 

16 

                               Unit Name: HandleAccountCreation 

Description This function ensures valid account form data as well as that each 
account created is unique. If the form is valid, a user id is generated for 
the account and it is submitted to the database. If the form is invalid, the 
request for registration is denied and the user notified.  

Subsystem Back-end server 

Input HTTP POST request containing account creation form data  

Output HTTP response confirming outcome of registration request  

Unit Calls None 

Exceptions Failure to validate account creation form data will return HTTP 400 bad 
request.  

Comments Once a registration attempt is validated, the password is salted and 
hashed before storage in the database to ensure security of user 
information.  

                               Unit Name: HandleUserLogin 

Description This function compares account credentials submitted through login form 
to the account credentials stored within the user database table (Table 
3.3.1) to validate or invalidate the login attempt.  

Subsystem Back-end server  

Input HTTP POST request containing login form data 

Output HTTP response confirming outcome of login request 

Unit Calls RenderStudentPortal, RenderInstructorPortal  

Exceptions s Excessive login attempts will return HTTP 429 too many requests. 

Comments Upon a successful login, the user will be redirected to their user portal. 
Upon an unsuccessful login, the user will be notified of the failed login 
attempt and asked to retry.  



 

 
 

 
 
 
 
 
 
 
 

17 

                               Unit Name: HandleUserLogout 

Description This function enables the user to logout of their account and redirects 
them to the WARE homepage  

Subsystem Back-end server  

Input HTTP POST request 

Output HTTP Response confirming successful logout request  

Unit Calls RenderHomepage  

Exceptions Failure to detect an active user session will immediately exit this unit. 

Comments Upon a successful logout the user will be signed out of his current 
session and redirected to the WARE homepage.  

                               Unit Name: ProcessSubmission 

Description This function processes a user’s Python code submission and returns 
results of submission.  

Subsystem Back-end server  

Input HTTP POST request containing user submitted code  

Output HTTP response containing the textual and visual results from executing 
a user’s code submission. 

Unit Calls ValidateSubmission, ExecuteSubmission, UpdateProgress, 
CacheSubmission, RenderEnvironment  

Exceptions Failure to validate the request will return HTTP 400 bad request 

Comments This function will update the user’s progress in the environment after 
submission, and save the most recent submission for querying by the 
instructor student who made the submission. 



 

 
 

 
 
 
 
 
 

18 

                               Unit Name: ValidateSubmission 

Description This function validates code submitted to the web server by a user to 
ensure file type, valid file data, and the inclusion of environment-related 
library calls.  

Subsystem Back-end server 

Input User submitted code 

Output Validation or invalidation flag based on validity of user code 

Unit Calls None 

Exceptions Failure to recognize file type or data will raise an exception and exit the 
unit without validating the submission.  

Comments Upon successful validation, the user’s code submission continues 
processing. Upon unsuccessful validation, the user is notified.  

                               Unit Name: ExecuteSubmission 

Description This function encapsulates a user’s code submission in a separate 
process, executes the submission to capture results, and returns 
formatted results for user viewing.  

Subsystem Back-end server  

Input Validated user code submission  

Output Formatted results from executing the user’s submission 

Unit Calls FormatResults  

Exceptions If an exception occurs during submission execution, it is captured for 
display to the user and execution is aborted.  

Comments Once user code has been executed and results are formatted, the 
results will be returned to the process submission unit for display to the 
user.  



 

 
 

 
 
 
 
 
 
 
 

19 

                               Unit Name: FormatResults 

Description This function evaluates results generated during the execution of the 
submitted code and separates them into textual and visual results.  

Subsystem Back-end server 

Input Unformatted results of executing the user submission  

Output Formatted textual and visual results of executing the user submission  

Unit Calls GenerateGIF  

Exceptions Unexpected result values will halt execution of the unit and invalidate the 
submission. 

Comments Once the unformatted results are received during the execution of 
submitted code, the formatted results are returned for display to the user.  

                               Unit Name: GenerateGIF 

Description This function compiles visual results generated throughout the execution 
of user submitted code into a GIF file for visualizing the environment 
throughout execution to the user.  

Subsystem Back-end server 

Input Visual results of executing the user submission 

Output GIF data to visualize the environment throughout execution  

Unit Calls None  

Exceptions Failure to recognize visual results interrupts this unit and returns a 
preview image for the associated environment.  

Comments If no visual data is received, this unit is aborted and the preview image 
for the associated environment is returned.  



 

 
 

 
 
 
 
 
 
 
 
 
 

20 

                               Unit Name: CacheSubmission 

Description This function will save the user’s validated code submission to the 
database for later use by the student, or for analysis by the instructor.  

Subsystem Database  

Input Validated user code submission, Environment ID (EID), User ID (UID)  

Output Result of caching attempt (success or failure)  

Unit Calls None 

Exceptions Failure to store a submission due to file size will halt the unit and notify 
the user.  

Comments Only one submission per user may be saved to the database, if more 
than one submission is made, the latest submission replaces the prior 
submission.  

                               Unit Name: UpdateProgress 

Description This function will update the current progress percentage and progress 
bar for an environment 

Subsystem Database  

Input Validated user code submission, Environment ID (EID), User ID (UID) 

Output One of three states - Not started, in progress, and completed. 

Unit Calls None  

Exceptions Failure to update progress will halt the unit and notify the user.  

Comments Updates the progress status for a student in an environment. 



 

 
 

 
 
 
 
 
 
 
 
 
 
 

21 

                               Unit Name: FetchLastSubmission 

Description This function will retrieve a specific student’s last code submission in a 
certain environment.  

Subsystem Database  

Input User ID (UID), Environment ID (EID) 

Output Textual data for the student’s last submission  

Unit Calls None  

Exceptions Failure to retrieve last submission returns HTTP 404 not found 

Comments Data for the student’s last submission remains in the database. 

                               Unit Name: FetchStudentInfo 

Description This function will retrieve metadata relating to a specific student as well 
as that student’s progress in each environment associated with their 
class. 

Subsystem Database 

Input User ID (UID) 

Output Student metadata, progress in assigned environments 

Unit Calls None 

Exceptions Failure to retrieve student info returns HTTP 404 not found. 

Comments This function can only be called by a user with the instructor role.  



 

 
 

 
 
 
 
 
 
 

22 

                               Unit Name: RenderClassCreation 

Description This function generates the class creation page using a stylized HTML 
template that includes the class creation form. 

Subsystem Back-end server 

Input HTTP GET request 

Output HTTP response containing class creation page data 

Unit Calls HandleClassCreation 

Exceptions Failure to access the class creation page template will result in HTTP 
500 internal server error. 

Comments Upon the class creation page being rendered the user will have a form 
with various fields to fill out - including class name, and environments 
chosen. 

                               Unit Name: HandleClassCreation 

Description This function ensures valid class form data as well as that each class 
created has a unique name. If the form is valid, a class id is generated 
for the class and it is submitted to the database. If the form is invalid, the 
request for registration is denied and the instructor notified. 

Subsystem Back-end server 

Input HTTP POST request containing class creation form data 

Output HTTP response confirming outcome of registration request 

Unit Calls None 

Exceptions Failure to validate class creation form data will return HTTP 400 bad 
request. 

Comments This function can only be called by a user with the instructor role.  



 

 
 
 

 
 

4.2.3 Data Structures 
User Account data will be tracked using a database table with the schema shown 

in Table 4.2.3.1. New entries are added to this table whenever a user registers for an 
account, and these details will be used to keep track of the user and their progress in 
the various environments offered by the WARE service. Each user will have an identifier 
generated for their account to ensure uniquity and allow for continuous data tracking. 

23 

                               Unit Name: FetchClassInfo 

Description This function will retrieve metadata related to the specified class ID, as 
well as metadata for any environment associated with that class. 

Subsystem Database 

Input Class ID (CID) 

Output Class metadata including name, associated environments 

Unit Calls None 

Exceptions Failure to retrieve class info returns HTTP 404 not found. 

Comments Class info cannot be changed by users after the class has been 
instantiated, however, it is available to all users (student or instructor) 
participating in the class. 

                               Unit Name: UploadFile 

Description This function will take in a Python File and will output the contents of the 
file and place it into the text editor. 

Subsystem Back end server 

Input HTTP POST Request 

Output HTTP response containing code in the text editor. 

Unit Calls None 

Exceptions Failure to read file data of any non .py file. 

Comments This can only read in file data for python files (.py).  



 

This identifier will be used as the primary key in the user database table. In addition to 
this primary key, each user will have an associated class_id which references the class 
to which that user is engaged in, and acts as a foreign key. 
 

Table 4.2.3.1: Database table template including attributes and their respective types for 
user information. 

 
Information pertaining to classes will be tracked using a database table with the 

schema shown in Table 4.2.3.2. New entries will be added to this table whenever an 
instructor creates a new class from their homepage, from which point students may join 
the class to engage in the environments selected by the instructor for practice. Each 
class will have a unique identifier generated for it that will act as a primary key and allow 
students to join the class. 
 

Table 4.2.3.2: Database table template including attributes and their respective types for 
class information. 

 
Information specific to each environment will be tracked using a database table 

with the schema shown in Table 4.2.3.3. This database table will contain the name of 
the environment, its description, and the filename of the video used as a preview for the 
environment. This database table is planned to be static in nature, such that only WARE 
developers may add new entries, and each environment is assigned a unique identifier 
upon creation that will act as the primary key. 
 

Table 4.2.3.3: Database table template including attributes and their respective types for 
environment information. 

 

24 

User Database Table Schema 

Value id class_id first_name last_name password user_type email 

Type <int> <int> <string> <string> <string> <bool> <string> 

Class Database Table Schema 

Value id class_name instructor_name environment_list 

Type <int> <string> <string> <list<int>> 

Environment Database Table Schema 

Value id name brief_description description preview_filename 

Type <int> <string> <string> <string> <filename> 



 

User progress data will be tracked using a database table with the schema 
shown in Table 4.2.3.4. This database table is updated whenever the user submits code 
to an environment which they have been assigned, with progress being tracked in three 
stages: not started, started, and complete. Additionally, the progress entry database 
table will contain the filepath of the associated user’s most recent submission for an 
environment, such that it can be retrieved and reviewed by the user or their instructor 
later on. Within this table, each entry is associated with a unique identifier, which acts 
as a primary key. There are two foreign keys, user_id and environment_id, that 
reference the user and the environment associated with this progress entry. 

 

Table 4.2.3.4: Database table template including attributes and their respective types for 
user progress data. 

 

4.3 Updated Hardware Design 
Our project is fully software based and does not require any hardware. 

25 

Progress Entry Database Table Schema 

Value id user_id envrironment_id progress submission_path submission_date 

Type <int> <int> <int> <float> <filepath> <datetime> 



 

4.4 Updated User Interface Design 

Figure 4.4.1: The WARE homepage as viewed from the Google Chrome web browser. 
The home page gives general information about WARE. The masthead displays a 

call-to-action button to create a user account and begin using WARE. 

26 



 

 

Figure 4.4.2: The homepage as viewed from an iPhone 6 smartphone. The navigation 
bar on the top features a hamburger icon that lists all of the navigation links. Fonts for 

the masthead and call to action elements below are optimized for smaller screens. 

27 



 

 

Figure 4.4.3: The WARE sign in page. Existing users will use this page to log in to their 
account using their email address and password. Additional links are provided below 

the form: one link navigates to a page to assist the user in resetting their password and 
the second link navigates to the sign up page 

28 



 

 

Figure 4.4.4: The reset password page. This form is displayed to the user after clicking 
the reset link provided in the login page. The form has one field for an email address. 
After the user clicks the button to submit the reset request, an email will be sent to the 

provided email address containing a link to reset their password. 

29 



 

 

Figure 4.4.5: The WARE sign up page. Users are required to enter their first and last 
name, email address, and password to create an account. Radio buttons are given to 

give the user a choice between an instructor or a student account. The submit button is 
below the form and out of view in the screenshot. 

30 



 

 

Figure 4.4.6: An environment page with code editor and outputs. The header displays 
the name of the current environment and its goal. On the right, a link is given for the 
environments landing page and a dropdown with the user’s name is given for user 
options. In the main section, a code editor is presented that utilizes the CodeMirror 

Javascript plugin for syntax highlighting. Next to the code editor is a generated video of 
the robot in use and a terminal output. 

 

 

Figure 4.4.7: Options for uploading and compiling code. Users are allowed to upload 
their own code from a file and have it display in the code editor for further modification 
and submission. The name of the file uploaded is displayed within the input box next to 
“Upload Code.” On the right, the submission button submits the form to the back-end 

server for processing. 

31 



 

 

Figure 4.4.8: The compile button after it is clicked. Once the code is submitted, the 
button is disabled from being clicked again and a progress spinner is displayed to 

indicate that the code is being processed. 

 

 

Figure 4.4.9: The environments landing page. This page lists each environment that is 
available to the user. 

32 



 

 

Figure 4.4.10: An example of an environment card that is displayed on the 
environments landing page. Each card lists the title of the environment, a short 

description, a progress bar indicating the amount of progress made on the environment 
by the user, and a decorative arrow. 

 

 

 

 

 

 

 

33 



 

5. Updated Glossary of Terms 
1. Bootstrap - A CSS and Javascript toolkit for implementing pre-developed website 

components with basic styling into a web application.  
 

2. Chromium-based - An application that utilizes the Chromium Blink engine to 
render web content 

 
3. Code editor - The input box displayed in an environment that allows a user to 

input code. 
4. Compile - The term used to describe the process of generating an output using 

code written in a programming language 
 

5. CSS (Cascading Style Sheets) - A programming language that is used by a web 
browser to style HTML components and interpret how a web page is displayed to 
users. 

 
6. Database - An organized collection of information stored electronically that can 

be accessed, modified, and controlled. 
 

7. Environment - Refers to a specific robotics learning exercise in which the user 
can input code and see the results from compilation of their code. 

 
8. Firefox - An open-source internet browser developed by the Mozilla Corporation. 

 
9. Flask  - A basic back-end framework that utilizes Python to run a lightweight web 

server.  
 

10.HTML (HyperText Markup Language) - The widely adopted programming 
language used to create and display web pages 

 
11. Internet browser - An application that transmits and receives HTTP web page 

requests and renders the content received by such requests. Some examples of 
browsers are Mozilla Firefox, Google Chrome, and Apple Safari 

 
12. Instructor - A user that is given the option within WARE to create a classroom, 

invite student users to join the classroom, and view code submissions made by 
student users. 

 
13.JavaScript - An object-oriented programming language used for developing 

interactive elements and design effects that are displayed in websites. 
 

14.Login - The process that a user undergoes to access their WARE account. Users 
are required to provide an email address and a password to login. 

 
15.Mobile - Term used to describe cordless computing devices that are smaller than 

34 



 

general computers, more power-efficient, and utilize a touch screen for user 
input. Examples include smartphones and tablets. 

 
16.MySQL - a popular relational database management system used for 

implementing an SQL database 
 

17.OpenAI Gym - An open source library that consists of environments for creating 
reinforcement learning algorithms. 

 
18.Python - A popular, interpretive programming language that is often used for its 

increased readability and minimal learning curve 
 

19.Student - A user that is given the option within WARE to add themselves to an 
instructor’s classroom and access environments that are allowed by an 
instructor. 

 
20.Terminal output - The output in the form of text that is displayed to the user within 

an environment after compiling their code 
 

21.WARE (Web Application for Robotics Education) - The project’s name. A 
web-based learning platform that offers Open AI Gym robotics environments for 
users to interact with. 

 

 

 

 

 

 

 

 

 

 

 

 

 

35 



 

6. Engineering Standards and Technologies 

 

 

 

 

 

 

 

36 

   Term: Web Content Accessibility Guidelines (WCAG) 

Standard or 
Technology: 

Standard 

Description: WCAG is a set of standards that focus on web accessibility, in a 
variety of ways, from business policy to individuals with disabilities. 

Use or future 
use in project: 

We will take note of various standards and guidelines and what 
makes them important. We will design our web application with them 
in mind; an example being keeping our design colorblind friendly. 

Reference (if 
applicable): 

https://www.w3.org/WAI/standards-guidelines/wcag/ 
 

                             Term: SHA-2 

Standard or 
Technology: 

Standard 

Description: Hashing is used to secure information from unauthorized personnel. 
In a web application it is most commonly used to prevent user’s 
sensitive data from being exposed. 

Use or future 
use in project: 

We will be using SHA-2 to better secure our user’s passwords. We 
will not be storing the user’s password in the database, but rather a 
hash of it which cannot be reversed if it were to somehow be 
exposed. 

Reference (if 
applicable): 

https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-
08-01/documents/fips180-2.pdf 



 

 

 

 

37 

        Term: HyperText Markup Language (HTML) 

Standard or 
Technology: 

Standard 

Description: HTML is the main structure of any website. It's how the web browser 
is able to format web pages to be displayed to the user. 

Use or future 
use in project: 

Our website’s front end / user interface is primarily done by using 
HTML and styled with CSS.  

Reference (if 
applicable): 

Not applicable 

                              Term: Python 

Standard or 
Technology: 

Technology 

Description: Python is a multipurpose programming language that is highly 
flexible, simple to use, and versatile. 

Use or future 
use in project: 

WARE has a backend and database fully written in Python. We 
utilize many of its libraries for versatile uses. 

Reference (if 
applicable): 

Not applicable 

                             Term: Flask 

Standard or 
Technology: 

Technology 

Description: Flask is a web framework that is used for creating web applications. 

Use or future 
use in project: 

Since the beginning of our project first being created we have been 
using Flask. 

Reference (if 
applicable): 

Not applicable 



 

 

 

 

 

 

 

 

 

 

38 

                        Term: Visual Studio Code 

Standard or 
Technology: 

Technology 

Description: Visual Studio Code is a professional code editor and can be used for 
a variety of programming languages. 

Use or future 
use in project: 

We have been using Visual Studio Code since the beginning. It has 
many features and plug-ins that improve quality of life, as well as 
keeps files and folders organized nicely. 

Reference (if 
applicable): 

Not applicable 

                             Term: Bootstrap 

Standard or 
Technology: 

Technology 

Description: Bootstrap is a framework that focuses on CSS, which inturn makes 
web applications look better and professional. 

Use or future 
use in project: 

We began using bootstrap close to the beginning of creating the 
project. We need to utilize CSS to make our website’s user interface 
friendly and easy to navigate. 

Reference (if 
applicable): 

Not applicable 



 

 

 

 

 

 

 

 

 

39 

                             Term: JavaScript 

Standard or 
Technology: 

Technology 

Description: JavaScript is a programming language that adds functionality to a 
webpage. 

Use or future 
use in project: 

We have used JavaScript to aid with submission processing on our 
environment page. We will be implementing a text editor called 
‘CodeMirror’ soon which is also made with JavaScript. 

Reference (if 
applicable): 

Not applicable 

                          Term: OpenAI Gym 

Standard or 
Technology: 

Technology 

Description: The OpenAI Gym toolkit is for developing and comparing 
reinforcement learning algorithms 

Use or future 
use in project: 

The OpenAI Gym is the core of our project. Users will be 
programming in Python to complete the objectives of each 
environment. 

Reference (if 
applicable): 

Not applicable 



 

7. Project Impact and Context Considerations 
Our project holds great importance due to the fact that in order for the field of 

robotics to grow and evolve, we must also make it accessible and allow new students to 
learn and practice with it. Robotics is becoming more and more important within our 
daily lives, from roombas to self driving vehicles. The field is constantly expanding to 
improve the lives of everyone. By making robotics training more accessible to students, 
we can find new bright minds to create innovative technologies to push the field even 
further. The robotics innovations can be applied to things such as life saving machines 
in the medical field, or improved road safety, the possibilities are endless. WARE gives 
students an opportunity to discover and learn about this world and how they can 
contribute to it. 

The economic aspect of WARE is very positive because having an online 
resource means less money and resources need to be spent on creating real life robots 
to practice on. Robotics can be quite difficult for a lot of people to get into because they 
don't have access to those resources to test, but being online allows students to 
practice code without having to order expensive robot parts or assembling the robot. 
This will help globally as well because more places around the world that may not have 
been able to previously practice coding with robots can now more easily practice with 
them through the internet.  

 

8. Updated List of References 
8.1 Problem Domain Book 
Khine, M. S. (2017). Robotics in STEM education redesigning the learning experience. 
Cham: Springer. doi:10.1007/978-3-319-57786-9 

The whole purpose of our project is to bring more accessibility to the 
underexplored field of robotics and help students learn about robotics concepts and 
principles. Our goal is to help draw interest and attention to this field despite its 
generally higher barrier of accessibility compared to most other subjects. Khine’s book 
helps bring light to the importance of robotics and brings light to better methodologies to 
best teach others. 

 

40 



 

8.2 Reference Articles 
Wang, Qianxiang, et al. “Educational programming systems for learning at scale.” 2014, 
pp. 177-178. Doi = 10.1145/2556325.2567868. 

This article is about teaching students in an ideal way to best understand 
programming. It mentions having a strong system that is close to a level of mentorship. 
This can be of use to us because we need to create a help / tip section for if a student is 
not submitting code that completes objectives multiple times.  

 

Chalmers, Christina. "Preparing Teachers to Teach STEM through Robotics." 
International Journal of Innovation in Science and Mathematics Education, vol. 25, no. 
4, 2017. 

Chalmers’ article focuses mainly on teachers and the various data from being 
surveyed after certain activities regarding STEM / robotics activities. While it’s main 
purpose is to better educate teachers with regards to teaching activities involving 
STEM, it gives an important perspective to anyone who needs to teach students 
through any means which is needed as we’re essentially setting up a teaching activity. 

 

Berndt, Sara, et al. “The SDM Finger: Teaching engineering design through soft 
robotics.” Science scope (Washington, D.C.), vol. 43, no. 4, 2019, pp. 14–21. 

This research article helps prove the point on the importance of giving students 
early exposure to a field or subject to draw more interest in it early on. With the field of 
robotics having a higher barrier of entry than most other fields, it’s difficult to get those 
who are younger interested in it. Lowering that barrier is partially what WARE is trying to 
accomplish. 

 

8.3 Websites  
https://flask.palletsprojects.com/en/1.1.x/ 

Flask is the primary framework we are utilizing in order to create the WARE 
website. Flask provides many of the tools we need to develop our web application while 
remaining simple and easy to use. It is important that we have the documentation to 
follow for reference whenever we get stuck. 

 

41 



 

https://gym.openai.com/docs/ 

OpenAI’s Gym is what our project is centered around. All of the user 
environments utilize Gym for their various goals and exercises that the students will be 
working on and completing. With all members of our team being newly introduced to this 
we will be reliant on documentation. 

https://getbootstrap.com/docs/5.0/getting-started/introduction/ 

Bootstrap is another important framework that is being used to create a simple, 
user friendly, clean interface through CSS. With Bootstrap we are able to create a 
professional looking website with plenty of design and colors while still maintaining a 
simple style which looks good to the user but also helps them navigate the website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 



 

9. Contributions of Team Members 

Sean Griffith 
Time spent: 7 hours 
Sean wrote the Summary of Changes in Project Specification section, updated and 
reorganized the Updated Technical Requirements Specification section, updated and 
reorganized the Updated Use Case Modeling section, contributed to the Program Units 
section, and revised and updated the Data Structures section.  

Ryan Lunt 
Time spent: 6.5 hours 
Ryan created and filled the tables in the Engineering Standards and Technologies 
section, found and added references to the Reference section, and contributed to the 
Program Units section by updating and adding program units. 

Herman Hira 
Time spent: 3 hours 
Herman wrote the Summary of Changes in Project Design section, helped revise the 
Program Units section, and wrote the Project Impact and Context Considerations 
section. 

Zachery Wiles 
Time spent: 10 hours 
Zach wrote the Abstract, drafted the Recent Project Changes section, contributed to the 
system level diagram in the Updated Design section, created the user interface 
components for the screenshots provided in the Update Design section, and updated 
the glossary terms. 
 

43 


